

Sistemas de guiado con rodamientos lineales

Sinopsis de los cambios

- Se han añadido utilización correcta e indicaciones de seguridad.
- Se han completado instrucciones de lubricación/montaje y, ahora, están al inicio del catálogo.
- La abreviación con ejemplos explicativos se ha incluido en el catálogo, para una identificación más sencilla, para todos los rodamientos lineales y sets lineales.
- · Los sets lineales Compactos (R1027 ... / R1029 ...) vuelven a estar disponibles con juego radial normal.
- Los diagramas de factor de dirección de carga para rodamientos lineales Super A / B (R0671 ... / R0673 ...) de los tamaños Ø16. 20. 25 se han actualizado.
- Los rodamientos lineales Super H / SH (R0732 .../ R0733 .../ R0730 ... / R0731 ...) y los sets lineales ya no aparecen como agotados y vuelven a estar disponibles. Se han incluido todos los datos técnicos.
- Las carcasas de fundición para los sets lineales (R1065 ... / R1066 ... / R1067 ... / R1068 ...) se están sustituyendo gradualmente por carcasas de acero.
- Los sets lineales de fundición (R1065 1.. / R1067 1.. / R1081 1..) con rodamiento lineal Estándar sin retenes se han sustituido en el catálogo (aptos para aplicaciones con elevadas temperaturas).
- Los sets lineales de fundición (R1073 ... / R1074 ...) con rodamientos lineales Estándar han dejado de estar disponibles.
 Como sustitutos, en el catálogo se ofrecen sets lineales de aluminio (R1071 2.. / R1072 2..) con rodamientos lineales Estándar.
- Los rodamientos radiales (R0678 ...) y los sets Radiales Compactos (R1613 ...) ya no aparecen como agotados y vuelven a estar disponibles. (Ejecución de carga pesada con amplias ventajas en dirección circunferencial) Ahora, los ejes de acero adecuados montados con soportes de eje (R1018 ... / 1012 ...) los encontrará directamente en este capítulo. Se han incluido todos los datos técnicos.
- En la sinopsis de ejes se ha introducido la longitud de eje útil máxima. Se han modificado los materiales de los ejes. Se ha
 indicado el enlace para el configurador de ejes de la eShop de Rexroth. Todas las ejecuciones de eje estándar se han incluido
 con números de imagen. Las consultas pueden realizarse a través del configurador de ejes.
- El soporte de eje alto de aluminio (R1050 ...) y la versión con eje de acero montado (R1011 ...) vuelven a estar disponibles hasta Ø50. Se han incluido todos los datos técnicos.

Sets lineales eLINE, R1027

Rodamientos lineales

Super, R0730

Set lineal, R1071 2

Eje de acero con soporte de eje, R1011

Set lineal con carcasa de acero, R1065

Set lineal con carcasa de acero, R1067

Rodamientos lineales Radiales, R0678

Sets radiales Compactos, R1613

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Sistemas de guiado con rodamientos lineales

	•		
Ayuda para la selecc	ión de rodamientos lineales	9	
Sinopsis del product	to .	10	
Indicaciones		12	
Directivas y normas		13	
Dimensiones princip	ales	14	
Capacidades de carç	ga	15	
Cálculo de la duracio	ón de vida	16	
Lubricación		21	
Montaje		24	
Tablas con dimensio	nes	26	
Rodamientos lineale	s compactos, eLINE	28	
Sets lineales eLINE,	Compactos	34	
Rodamientos lineale	s Super y □	38	
Sets lineales con roo	damientos lineales Super ፟ o	54	
Dadamiantas linasla	a Conser The Co	74	_
Rodamientos lineale			a
Sets lineales con roo	damientos lineales Super 🗓 o 🖫	88	
Rodamientos lineale	s Estándar	96	
Sets lineales con roo	damientos lineales Estándar	120	
Rodamientos lineale	s Segmentarios	130	
Sets lineales con roo	damientos lineales Segmentarios	136	
Rodamientos lineale		138	
	damientos lineales Radiales	146	
	dos con soportes de eje para rodamientos lineales Radiales	148	
Sets Radiales Comp	actos	152	
Rodamientos lineale	s Antigiro	158	
	damientos lineales Antigiro, Carcasa de aluminio	170	
Octo inicales con roc	admentes inicales Antigne, careasa de diaminio	170	
Rodamientos lineale	s para movimientos de rotación y traslación	192	
Ejes de acero de pre	cisión y mecanizado de extremos de eje	198	
Fies de acero con so	pportes de eje montados, soportes de eje	218	
<u> </u>	politos de eje mentados, soportos de eje	210	
Soportes brida de ej	es	236	JOP

Información adicional

241

Índice

Rodamientos lineales eLINE, Compactos		(Managed)	
normal inoxidables	R0658		32
Sets lineales eLINE, Compactos cerrados, normales o anticorrosivos ajustables, normales	R1027 R1028		34 34
Tandem cerrados, normales o anticorrosivos	R1029		36
Rodamientos lineales Super			
cerrados	R0670		50
abiertos	R0671		50
Rodamientos lineales Super cerrados	R0672		52
abiertos	R0673		52
Sets lineales con rodamientos lineales Super ☑ o ▣			
cerrados ajustables	R1035 R1036		56 56
abiertos abiertos, ajustables	R1037 R1038		58 58
abertura lateral abertura lateral, ajustables	R1071 R1072		60 60
Sets lineales con rodamientos lineales Super Tandem			
cerrados	R1085		62
ajustables	R1032		62
abiertos	R1087		64
abiertos, ajustables	R1034	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	64
Brida	R1083	O de la	66

Sets line	ales con rodamientos lineales Super 🖸 o 🗈		
	cerrados ajustables	R1065 R1066	68 68
	abiertos abiertos, ajustables	R1067 R1068	70 70
	Brida	R1081	72
Rodamie	ntos lineales Super 🗓		
	cerrados	R0732	84
	abiertos	R0733	84
Rodamie	ntos lineales Super		
	cerrados	R0730	86
	abiertos	R0731	86
Sets line	ales con roda <mark>mient</mark> os lin <mark>eales</mark> Super © o		
	cerrados ajustables	R1701 R1702	90 90
	abiertos abiertos, ajustables	R1703 R1704	92 92
	abertura lateral, ajustables	R1706	94

Índice

	ientos lineales Estándar			
	cerrados, sin retenes cerrados, con retenes	R0600 R0602		104 104
	cerrados, sin retenes, anticorrosivos cerrados, con retenes, anticorrosivos	R0600 R0602		104 104
	ajustables, sin retenes ajustables, con retenes	R0610 R0612		108 108
	abiertos, sin retenes abiertos, con retenes	R0630 R0 <mark>632</mark>		110
	Tandem con retenes, normales o anticorrosivos	R0650		112
	Brida con retenes, normales o anticorrosivos	R0740		114
	Tandem con brida con retenes, normales o anticorrosivos	R0741		116
	Brida central con retenes, normales o anticorrosivos	R0742		118
Sets lin	cerrados ajustables	R1065 R1066		122 122
	abiertos abiertos, ajustables	R1067 R1068		124 124
			<u> </u>	
	abertura lateral abertura lateral, ajustables	R1071 R1072		
				126
Rodam	abertura lateral, ajustables	R1072		126
Rodam	abertura lateral, ajustables Brida	R1072		126 126 128

Podamie	ntos lineales radiales			
Rodaniic	sin retén o completamente estancos	R0678		144
Sets line	ales con rodamientos lineales radiales		(Residual Control of C	
	abiertos, ajustables	R1076		146
	abertura lateral, ajustables	R1078		150
Sets radi	ales compactos		6.0	
	abiertos, ajustables	R1613		154
Rodamie	ntos lineales antigiro			
	Tipo 1: una ranura guía Tipo 2: dos ranuras guía	R0696 0 R0696 3		166 166
Rodamie	ntos lineales antigiro Compactos	R0720		168
Sets line	ales con rodamientos lin <mark>eale</mark> s antigi <mark>ro, c</mark> arcasa de alu	minio		
	Tipo 1: una ranura guía Tipo 2: dos ranuras guía	R1098 2 R1098 5	00	170 170
	Tandem Tipo 1: una ra <mark>nura</mark> guía Tipo 2: dos <mark>ranu</mark> ras guía	R1099 2 R1099 5	000	172 172
Sets line	ales con rod <mark>amient</mark> os li <mark>nea</mark> les antigiro, carcasa de ace	ero		
	Tipo 1: una ranura g <mark>uía</mark> Tipo 2: dos ranuras guía	R1096 2 R1096 5		174 174
	Tandem Tipo 1: una ranura guía Tipo 2: dos ranuras guía	R1097 2 R1097 5		176 176
Sets line	ales con rodamientos lineales antigiro compactos			
		R0721		180
	Tandem	R0722		182
	Brida	R0723		184

Índice

Rodam	ientos lineales antigiro con cuatro ranuras guía			
		R0724		186
	Brida	R0725		188
	Brida miniatura	R0726		188
	Brida rotativa	R0727		190
Rodam	ientos lineales para movimientos de rotación y tra	aslación		
Rodaiii	nentos inicales para movimientos de rotación y tra	asiacion		
	con rodamiento rígido de bolas, serie 618	R0663		194
	con rodamiento rígido de bolas, serie 60	R0664	A COMP	194
	con rodamiento de agujas, sin retén	R0665		196
	con rodamiento de agujas, con retenes	R0667		196
Ejes de	e acero de precisión/mecanizado de ejes			
	Eje macizo - acero bonificado, anticorrosivo o acero cromado	R1000		203
	Eje hueco	R1001		203
	- acero bonificado o acero cromado			
Ejes de	e acero con soportes de ejes montados, soportes	de ejes		
	para rodamientos lineales Estándar y Super abiertos			
	con brida, altura reducida	R1010		222
	para sistemas de perfiles	R1025		224
	con brida, altura reducida	R1014		226
	con brida, altura reducida	R1011		228
	montaje lateral	R1015		230
	sin brida	R1013		232
	sin brida, con borde de referencia	R1016		234
	para rodamientos lineales radiales	R1018		148
		R1052		148
	para sets radiales Compactos	R1012		156
Soport	es brida de ejes			
	aluminio, Compacto	R1058		237
	aluminio	R1057		238
	fundición/acero	R1055		239
	fundición, brida	R1056		240

Ayuda para la selección de rodamientos lineales

Requisitos	Tipo de rodamiento lineal									
	Compacto/	Super	Super H/	Estándar	Segmen-	Radial	Par de	Movimiento		
	eLINE	A/B	SH		tario		giro	de rotación		
								v traslación		
Frecuencia de utilización	+++	+++	+	++	++	+	+	+		
Bajos costes	+++	++	+	++	+++	+	+	+		
Montaje especialmente sencillo	+++	++	+	++	++	+	+	++		
Dimensiones reducidas	+++	+	+	+	+++	_	+	+		
También versión inoxidable	+++	-	_	+++	+++	_	_	_		
Cargas altas	+	++	+++	+	+	+++	++	+		
Compensación de errores de alineación	_	+++1)	+++	-	_	_	_	_		
Deslizamiento especialmente suave	++	+++	+	++	++	++	++	++		
Alta temperatura > 100 °C	_	_	_	+++	_	_	_	_		
Suciedad gruesa	_	-	_	+++	_	_	_	_		
Entorno húmedo/muy húmedo	++	-	++	+++	++	_	_	_		
Con lubricantes de refrigeración acuosos	++	_	=	+++	++	_	_	_		
Adecuado para vacío	_	_		+++	<u></u>	_	_	_		
Transferencia de par de giro	-	-	-	_	_	-	+++	_		
Movimientos de rotación y traslación	_	-	-	Ŧ	_	-	_	+++		

¹⁾ Solo Super A

+++ Excelente ++ Muy bien Satisfactorio

Suficiente (no recomendable)

Datos técnicos	Tipo de roda	amiento linea	al						
		Compacto/	Super A/B	Super H/	Estándar	Segmen-	Radial	Par de giro	Movimiento
		eLINE		SH		tario			de rotación
									y traslación
Capacidad de carga dinámica	(N)	5 680	12060	23500	21 000	3870	54800	9 250 ⁴⁾	21 000
C _{máx} 1)									
Diámetro d	(mm)	8 hasta 50	10 hasta 50	20 hasta 60	3 hasta 80	12 hasta 40	30 hasta 80	12 hasta 50	5 hasta 80
Coeficiente de fricción µ 2)	()	0,001 hasta	0,001 hasta	0,001 hasta	0,001 hasta	0,001 hasta	0,001 hasta	0,001 hasta	0,001 hasta
		0,004	0,004	0,004	0,0025	0,004	0,002	0,004	0,0025
Velocidad v _{máx}	(m/s)	5	3	5	2,5	3	2	3	2,5
Aceleración a _{máx}	(m/s ²)	150	150	150	100	150	50	150	100
Temperatura de servicio	(°C)				-10 a	a 80 ³⁾			

- 1) La capacidad de carga depende de la dirección de carga. 🖚 Capítulo "Datos técnicos" del rodamiento lineal correspondiente
- 2) Los valores son válidos sin junta. Bajo cargas elevadas, la fricción es mínima. Con cargas muy pequeñas también puede ser mayor que el valor indicado.
- 3) Los rodamientos lineales estándar sin juntas también pueden utilizarse a temperaturas por encima de 100 °C.
- 4) El valor es válido para rodamientos lineales antigiro con 1 o 2 ranuras guía; versión con 4 ranuras guía hasta 36 600 N

Sinopsis del producto

Del amplio programa de sistemas de guiado con rodamientos lineales, en este catálogo encontrará la mejor solución para cada aplicación.

El rodamiento lineal eLINE se caracteriza por sus reducidas dimensiones y por tener un juego radial reducido. Gracias a los anillos de sujeción de metal integrados, no es necesaria la tradicional fijación axial en el alojamiento. El rodamiento eLINE posee dos retenes integrados y se suministra lubricado de fábrica, en versión normal o anticorrosiva.

El rodamiento lineal compacto básicamente es igual al rodamiento lineal eLINE. Se suministra con juego radial normal y está disponible con y sin retenes integrados en versiones normal y anticorrosiva.

El rodamiento lineal Super compensa automáticamente los errores de alineación de hasta 0,5 grados que se generan entre la carcasa y el eje sin una reducción de la capacidad de carga por presión en los extremos. Las causas de estas alineaciones incorrectas son, por ejemplo, las flexiones de ejes por altas cargas o imprecisiones en la construcción de la conexión. La autoalineación permite que las bolas entren en la zona de carga sin ninguna dificultad, repartiendo la carga uniformemente en toda la hilera de bolas. Otras características de estos rodamientos son la suavidad de funcionamiento, la gran capacidad de carga y la duración de vida.

Para grandes cargas o carreras de gran longitud existen los rodamientos lineales Super en ejecución abierta, para la utilización con soportes de ejes.

El rodamiento lineal Super si sin autoalineación es la solución para aplicaciones donde se utilice un solo rodamiento por eje y el rodamiento no pueda oscilar en el eje.

Los rodamientos lineales Super yestán equipados, en comparación al rodamiento lineal Super existente y probado desde hace tiempo, con aún más insertos de acero templado e hileras de bolas.

Las elevadas capacidades de carga permiten mover masas especialmente altas con plena compensación de errores de alineación.

Gracias a su jaula de acero, **el rodamiento lineal estándar** es robusto y adecuado para aplicaciones con mucha suciedad, por ejemplo, en la industria de la madera. Está disponible cerrado, ajustable y abierto. Para la utilización con temperaturas muy elevadas hay disponibles rodamientos lineales estándar sin retenes. La ejecución cerrada también se suministra en acero anticorrosivo y es especialmente adecuada para aplicaciones con vacío y en la industria alimenticia.

El rodamiento lineal Segmentario es, por su jaula robusta de plástico, el rodamiento lineal más económico. También puede suministrarse en versión anticorrosiva para aplicaciones donde se utilizan elementos anticorrosivos o sujetas a grandes exigencias de limpieza, por ejemplo, en el procesamiento de productos alimenticios, la fabricación de semiconductores o la técnica médica.

Los rodamientos lineales radiales son rodamientos altamente precisos para el movimiento de masas muy elevadas. La desviación de bolas radial permite que haya muchas hileras de bolas y elevadas capacidades de carga.

Esta serie está caracterizada por su gran rigidez y suavidad de marcha, así como sus amplias ventajas en dirección circunferencial.

Para aplicaciones donde otras guías lineales sufrirían tensiones adicionales a causa de estructuras base irregulares.

Los rodamientos lineales antigiro son guías longitudinales plenamente válidas con solo un eje. La transmisión del par de giro se realiza mediante hileras de bolas situadas en una posición rebajada.

Según la magnitud del par de giro que se pretenda transmitir, los rodamientos lineales antigiro se suministran con varias ranuras guía.

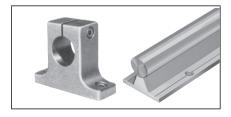
Los rodamientos para movimentos de rotatión y traslación se suministran con rodamientos rígidos de bolas o de agujas. Son adecuados tanto para movimientos oscilantes como para revoluciones medias.

Los sets lineales son unidades completas compuestas por una carcasa con uno o dos rodamientos lineales Rexroth. Se suministran en diversas versiones. Gracias a la producción en serie, los sets lineales ofrecen considerables ventajas económicas frente a las construcciones propias. Las carcasas se alinean fácilmente durante el montaje e impiden que los rodamientos sufran cargas adicionales.

Los ejes de precisión están disponibles con diferentes tolerancias, como ejes macizos, huecos, de acero bonificado, de acero anticorrosivo o cromo duro. Rexroth ofrece ejes de precisión según sus necesidades, cortados a medida con chaflanes en ambos lados o mecanizados de acuerdo con su dibujo o descripción. Utilice nuestro configurador de ejes.

www.boschrexroth.com/shaft-configuration

Los ejes de acero con soportes de ejes montados, soportes de ejes y soportes brida de ejes en diversas ejecuciones completan la gama de los rodamientos lineales.



Indicaciones

Utilización correcta

Utilización incorrecta

Indicaciones generales de seguridad

- Los rodamientos lineales son guías lineales para la absorción de fuerzas desde todos los sentidos transversales y momentos longitudinales y, en las construcciones especiales, también de pares de giro en torno a todos los ejes. Los sistemas de sellado con rodamientos lineales están previstos exclusivamente para guiar y posicionar, y utilizarse en máquinas.
- El producto ha sido diseñado exclusivamente para el uso profesional, y no para el privado.
- La utilización correcta también incluye que se hayan leído y comprendido completamente la documentación correspondiente y, en particular, estas "Indicaciones de seguridad".

Cualquier otro uso que difiera del especificado en la utilización correcta se considera incorrecto y, por lo tanto, no está autorizado. Si se montan o utilizan productos inadecuados en aplicaciones relevantes para la seguridad, se pueden producir estados operativos no previstos durante la aplicación que podrían causar daños personales o materiales.

El producto solo puede utilizarse en aplicaciones relevantes para la seguridad cuando la utilización en cuestión esté recogida y autorizada explícitamente en la documentación del producto.

Bosch Rexroth AG no asume ninguna responsabilidad sobre daños derivados de un uso no conforme a las normas. Los riesgos que se deriven de una utilización no correcta son responsabilidad exclusiva del usuario.

El uso no conforme a las normas incluye:

- el transporte de personas
- Deben tenerse en cuenta las disposiciones y normativas de seguridad del país donde se tiene previsto utilizar y aplicar el producto.
- Deben tenerse en cuenta las normativas vigentes en materia de prevención de accidentes y cuidado del medio ambiente.
- Utilizar el producto solo en un estado técnicamente correcto.
- Deben respetarse los datos técnicos y las condiciones ambientales indicados en la documentación del producto.
- El producto solo debe ponerse en servicio una vez que se haya determinado que el producto final (por ejemplo, una máquina o instalación) en el que esté montado cumple con las disposiciones vigentes en el país, las disposiciones de seguridad específicas del país y las normas de la aplicación.
- Los sistemas de guiado con rodamientos lineales Rexroth no pueden utilizarse en zonas potencialmente explosivas según la directiva ATEX 94/9/CE.
- Los sistemas de guiado con rodamientos lineales Rexroth no pueden modificarse o transformarse. El explotador solo puede realizar los trabajos descritos en las "Instrucciones breves" o las "Instrucciones de montaje para sistemas de guiado con rodamientos lineales".
- · El producto no debe desmontarse.
- A altas velocidades de desplazamiento, el producto genera ruido. Si fuera necesario, deberán tomarse medidas adecuadas para proteger los oídos.
- Deben cumplirse los requerimientos de seguridad específicos de ciertos sectores (por ejemplo, construcción de grúas, teatro, técnica de alimentos) recogidos en leyes, directivas y normas.
- Las uniones atornilladas deben estar dimensionadas según el estado actual de la técnica.
- Para la fijación deben utilizarse, como mínimo, tornillos de la clase de resistencia 8.8 según ISO 4762. Los pares de apriete máximos válidos para esta clase de tornillos no debe superarse incluso cuando se utilicen tornillos con resistencias superiores.
- La capacidad de carga máxima de una guía no solo viene dada por la capacidad de carga estática y dinámica de los contactos de bola, sino, esencialmente, por la unión atornillada entre el soporte del eje y la carcasa. A este respecto, los diámetros de rosca y las distancias de los orificios se especifican en las normas DIN ISO 13012-1 y DIN ISO 13012-2.
- ATENCIÓN: Es necesario asegurarse de que se utilizan todos los orificios de fijación disponibles en la carcasa y soporte del eje.

Directivas y normas

Los sistemas de guiado con rodamientos lineales Rexroth son aptos para aplicaciones lineales dinámicas que deben ejecutarse fiablemente y con gran precisión. La industria de las herramientas y otros sectores deben cumplir una serie de normas y directivas. Las normativas varían mucho de una parte a otra del mundo. En consecuencia, es obligatorio familiarizarse con las normas y directivas aplicables en la región correspondiente.

DIN EN ISO 12100

Esta norma describe la seguridad en las máquinas; principios generales para el diseño, evaluación del riesgo y reducción del riesgo. Ofrece una vista general y contiene traducciones acerca del desarrollo decisivo para las máquinas y de su uso correcto.

DIN ISO 13012

Rodamientos: accesorios para cojinete de bolas lineales en forma de casquillo. Esta parte de la norma ISO 13012 especifica las medidas principales, otras medidas determinantes y las tolerancias de los accesorios para rodamientos lineales en forma de casquillo según ISO 10285.

Esta parte de la norma ISO 13012 es válida para: carcasa, soportes de ejes, soportes brida de ejes y ejes.

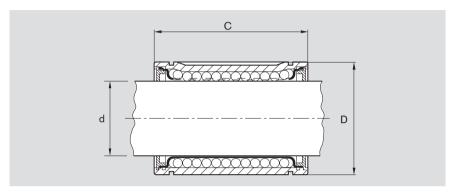
Directiva 2006/42/CE

Esta directiva de maquinaria describe los requisitos básicos en materia de seguridad y salud para la construcción y fabricación de máquinas. El fabricante de una máquina o su apoderado debe cerciorarse de que se realiza una evaluación de los riesgos con el fin de determinar los requisitos de seguridad y relativos a la protección de la salud válidos para dicha máquina. La máquina deberá construirse y fabricarse teniendo en cuenta los resultados de la evaluación de los riesgos.

Directiva 2001/95/CE

Esta directiva describe la seguridad general del producto para todos los productos que se comercializan y se destinan a compradores, o es previsible que se utilicen por estos, incluidos los productos que los compradores utilicen en el marco de un servicio.

Directiva 85/374/CEE


Esta directiva describe la responsabilidad que se desprende de productos defectuosos y es aplicable a bienes muebles de fabricación industrial, con independencia de que se hayan convertido o no en otro bien mueble o en un bien inmueble.

Directiva 76/769/CEE

Esta directiva describe las limitaciones relativas a la comercialización y utilización de determinadas sustancias y preparados peligrosos. Se consideran sustancias los elementos químicos y sus compuestos que existen de manera natural o se generan durante la producción. Los preparados son composiciones, mezclas y soluciones compuestas de dos o más sustancias.

Dimensiones principales

Comparación de diferentes rodamientos lineales

Medidas	(mm)											
Eje	Rodamient	os lineales	Rodamient	os lineales	Rodamient	os lineales	Rodamie	ntos	Rodamient	tos lineales	Rodamient	os lineales
	eLINE, Cor	npactos	Super		Super		lineales E	stándar	Segmentarios		Radiales	
			Øy₿		፴ y <u>⑤</u>							
Ød	D	С	D	С	D	С	D	С	D	C	D	С
3	_	_	_	_	_	_	7	10	-	_	_	_
4	-	_	_	_	-	-	8	12	-	_	-	_
5	-	-	-	-	-	4	12	22	-	-	-	_
8	15	24	-	-	-	-	16	25	-	_	-	_
10	17	26	19	29	_		19	29	_	_	-	_
12	19	28	22	32	-	-	22	32	20	24	-	_
14	21	28	_	-	-	_	-	-	_	_	_	_
16	24	30	26	36	_	-	26	36	25	28	_	_
20	28	30	32	45	32	45	32	45	30	30	-	-
25	35	40	40	58	40	58	40	58	37	37	_	_
30	40	50	47	68	47	68	47	68	44	44	60	75
40	52	60	62	80	62	80	62	80	56	56	75	100
50	62	70	75	100	75	100	75	100	_	_	90	125
60	_	-	-	-	90	125	90	125	-	-	110	150
80	-	_	_		-	_	120	165	-	_	145	200

DIN ISO 10285 rodamientos lineales, serie métrica

Esta norma contiene las dimensiones principales, las tolerancias y conceptos relativos a rodamientos lineales. Divide los rodamientos lineales por series de medidas y clases de tolerancia.

DIN ISO 13012 Accesorios para rodamientos lineales

Esta norma establece las dimensiones principales y otras medidas determinantes de los accesorios para los rodamientos lineales de serie métrica.

Los accesorios son las carcasas de los rodamientos, los ejes, los soportes brida de ejes y los soportes de ejes.

Se utiliza conjuntamente con la norma DIN ISO 10285.

Capacidades de carga

Definición según DIN ISO 14728 Capacidad de carga dinámica C

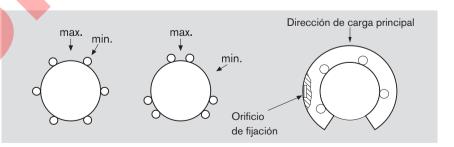
Es la carga radial invariable en tamaño y en dirección que un rodamiento lineal puede soportar teóricamente durante una duración de vida equivalente a 10⁵ m recorridos. Nota: Los valores de la capacidad de carga presuponen que la carrera del rodamiento lineal es, por lo menos, el triple que su longitud de construcción.

Las capacidades de carga dinámicas de las tablas son 30 % mayores que los valores según DIN. Estas capacidades han sido acreditadas mediante ensayos.

Capacidad de carga estática Co

Es la carga estática radial en la dirección de carga que corresponde a un esfuerzo de 5300 MPa calculado en el punto medio de contacto, entre el cuerpo del rodamiento y la pista de rodadura (eje).

Nota: La deformación resultante entre el cuerpo del rodamiento y la rodadura es de aprox. 0,0001 veces el diámetro del cuerpo del rodamiento.


Duración de vida nominal

Es la duración de vida que se calcula con una probabilidad del 90 % para un rodamiento individual o un grupo de rodamientos similares que marchan en condiciones iguales, con un material habitual de calidad normal y en condiciones de servicio convencionales.

Dirección de carga

Si la dirección de carga y la posición de los rodamientos lineales no están claramente definidas, se debe calcular con los valores mínimos de las capacidades de carga. Solo si los rodamientos están alineados en la dirección de carga, se pueden utilizar las capacidades de carga máximas.

En los rodamientos **cerrados** y ajustables, en las tablas se indican, dependiendo del tipo, la capacidad de carga mínima, la máxima o ambas. Los lanzamientos **abiertos** deben fijarse. Aquí es aplicable la capacidad de carga indicada para la dirección principal de carga, en vertical frente a la abertura.

Cálculo de la duración de vida

Duración de vida nominal

$$L = \left(\frac{C}{F_m} \cdot f_H \cdot f_t \cdot f_s\right)^3 \cdot 10^5$$

$$L_h = \frac{L}{2 \cdot s \cdot n_s \cdot 60}$$

L = duración de vida nominal (m)

 $_{-h}$ = duración de vida nominal (h)

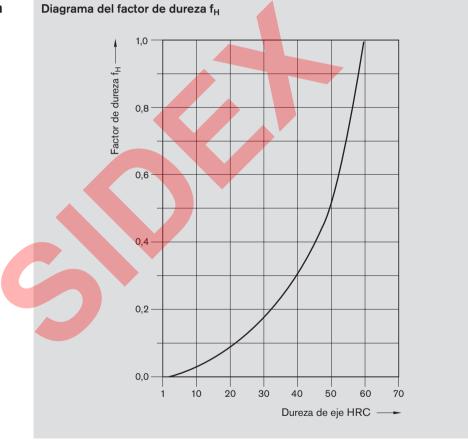
C = capacidad de carga dinámica (N)

 $F_m = carga dinámica equivalente$ (N)

f_H = factor de dureza para dureza de ejes

 f_t = factor de temperatura

 f_s = factor para carrera corta (solo rodamientos Segmentarios,


Compactos, eLINE, y Super)

s = longitud de carrera (m)

n_s = frecuencia de carrera

(carrera doble) (min⁻¹)

Factor de dureza para dureza de ejes

Factor de temperatura

solo para rodamientos lineales estándar

Temperatura del rodamiento (°C)	100	125	150	175	200
Factor de temperatura f _t	1	0,92	0,85	0,77	0,70

Factor para carrera corta

Si la carrera en los rodamientos lineales eLINE, Compactos, Super y Segmentarios es menor a tres veces la longitud de los rodamientos, se considera una carrera corta. En este caso, la duración de vida del eje es inferior a la de los rodamientos lineales. Para mayor información, véanse los datos técnicos correspondientes a cada rodamiento lineal. Para una carrera mayor a tres veces la longitud del rodamiento línea, el factor de carrera corta es $f_s = 1$.

(N)

Carga dinámica equivalente

En caso de cargas variables en una misma dirección, la carga dinámica equivalente $F_{\rm m}$ se calcula como sigue:

$$F_m = \sqrt[3]{\left|F_1\right|^3 \cdot \frac{q_{s1}}{100 \, \%} + \left|F_2\right|^3 \cdot \frac{q_{s2}}{100 \, \%} + \dots + \left|F_n\right|^3 \cdot \frac{q_{sn}}{100 \, \%}}$$

Si la carga actúa en varias direcciones, a continuación debe calcularse la carga resultante. Si hay grandes cargas previas o momentos de vuelco, deben

tenerse en cuenta estos factores para el

cálculo de la duración de vida.

$$F_1, F_2 \dots F_n = \text{cargas individuales dinámicas graduales}$$

$$q_{s1}, q_{s2} \dots q_{sn} = \text{recorridos parciales para } F_1 \dots F_n$$
 (%)

Cálculo de la capacidad de carga

Para el diseño, se puede calcular con la siguiente fórmula:

$$C_{\text{req}} = \frac{F_{\text{m}}}{f_{\text{H}} \cdot f_{\text{t}} \cdot f_{\text{s}} \cdot f_{\text{L}}}$$

 $C_{req} = cap.$ de carga dinámica requerida (N) $F_m = carga dinámica equivalente$ (N)

f_H = factor de dureza para la dureza de ejes f_t = factor de temperatura (-)

f_s = factor para carrera corta (solo rodamientos Segmentarios, Rodamientos

Compactos, eLINE y Super) (-) = factor de duración de vida (-)

Influencia de la duración de vida

Diagrama para el factor de duración de vida fi 1,0 0,9 0,8 Factor de duración de vida 0,7 0,6 0,5 0,4 0,3 0,2 0,1 20 40 60 80 100 200 400 600 1000 Duración de vida requerida L (10⁵ m)

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Cálculo de la duración de vida

Capacidades de carga

Medidas	Capacidades de carga (N)													
(mm)	Rodamie	ntos	Rodamie	ntos linea	ales Supe	r			Rodamie	ntos	Rodamier	ntos linea-	Rodamie	ntos
Eje	lineales e	eLINE,							lineales E	Estándar	les Segmentarios		lineales Radiales	
	compactos 🖪, 🖪			A, B										
Ød	C	Co	С	Co	С	Co	С	Co	С	Co	С	Co	C	Co
3	-	_	-	-	-	_	-	-	55	45	_	-	-	-
4	-	_	-	-	_	-	-	_	70	60	-	-	-	_
5	-	_	-	-	-	_	-	-	180	140	-	-	-	_
8	500	350	-	-	_	_	_	-	320	240	-	-	-	_
10	600	410	600	330	-	_	_	_	300	260	_	-	-	_
12	730	420	830	420	-	_	-	-	420	280	480	420	-	_
14	760	430	-	-	-	-	_	-	-	_	-	_	-	_
16	950	500	1020	530	-	_	-	_	580	440	720	620	-	_
20	1120	610	2020	1050	2520	1880	3530	2530	1170	860	1020	870	-	_
25	2330	1310	3950	2180	4430	3360	6190	4530	2080	1560	1630	1360	-	_
30	3060	1880	4800	2790	6300	5230	8800	7180	2820	2230	2390	1960	8500	9520
40	5040	3140	8240	4350	9680	7600	13500	10400	5170	3810	3870	3270	13900	16000
50	5680	3610	12060	6470	16000	12200	22300	16800	8260	6470		-	20800	24400
60	-	_	-	-	23500	18700	_	7	11500	9160	-	-	29500	34100
80	-	_	-	_	_	-	-	<u> </u>	21000	16300	-	-	54800	61500

Nota sobre las capacidades de carga dinámicas

El cálculo de la capacidad de carga dinámica se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C, según la tabla, por 1,26.

Factor de seguridad de carga estático

El factor de seguridad de carga estático S_0 sirve para evitar deformaciones permanentes en las rodaduras y en los cuerpos de rodamiento. Es la relación entre capacidad de carga estática C_0 y la carga máxima presente $F_{0\text{máx}}$. Lo determinante es la amplitud máxima, aun cuando aparezca brevemente.

$$S_0 = \frac{C_0}{F_{0max}}$$

 S_0 = factor de seguridad de carga estática (-)

C₀ = capacidad de carga estática

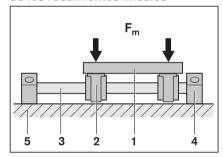
 F_{0max} = carga estática máxima (N)

(N)

Condiciones de uso
Condiciones de uso normales
1 ... 2
Con cargas bajas por golpes y vibraciones
2 ... 4
Con cargas moderadas por golpes o vibraciones
3 ... 5
Con cargas elevadas por golpes o vibraciones
4 ... 6
Con parámetros de carga desconocidos
6 ... 15

Recomendaciones para la carga de seguridad estática en diferentes condiciones de uso

(m)


(h)

(N)

Ejemplo de cálculo

La carga de un carro en vertical con respecto a ambos ejes es de 800 N. Se presupone que la carga está uniformemente repartida entre los cuatro rodamientos lineales. El carro se mueve a lo largo de una longitud de carrera de $s=0,2\,$ m con una frecuencia de carrera de $n_s=30\,$ carreras dobles/min. La duración de vida mínima $L_h\,$ debe ser de al menos 8000 horas. La temperatura de servicio se encuentra entre 0 °C y 80 °C. Deben utilizarse ejes de acero de precisión con una dureza mínima de HRC 60 y rodamientos lineales eLINE. Como condiciones de uso se presuponen cargas por impactos y vibraciones bajas.

Cálculo del tamaño de los rodamientos lineales

- 1 Carro
- 2 Set lineal (rodamiento en carcasa)
- 3 Ejes de acero de precisión
- 4 Soporte brida de eje
- 5 Estructura base

Ya que la carga está uniformemente repartida entre los cuatro rodamientos lineales, se deduce una carga por rodamiento de:

$$F_{\rm m} = \frac{800 \text{ N}}{4} = 200 \text{ N}$$

La duración de vida L de todo el recorrido, expresada en metros, se calcula de la siguiente manera:

$$L = 2 \cdot s \cdot n_s \cdot 60 \cdot L_h$$

$$L = 2 \cdot 0.2 \cdot 30 \cdot 60 \cdot 8000$$

$$s = longitud de carrera$$
 (m)
 $n_s = frecuencia de carrera$ (min)

$$L = 57.6 \cdot 10^5 \,\mathrm{m}$$

Del diagrama "Factor de duración de vida f_L " se deduce, para la duración de vida calculada de $57.6 \cdot 10^5$ m, un factor de duración de vida de $f_L = 0.25$.

Para una dureza de eje de HRC 60, del "Diagrama para factor de dureza f_H " se deriva un factor de dureza de $f_H = 1$.

El factor de temperatura $f_t = 1$ (según la tabla)

El factor de carrera corta es $f_s = 1$, debido a que no existen carreras cortas.

Por tanto, se deduce la capacidad de carga requerida C_{req}:

$$C_{req} = \frac{F_{m}}{f_{H} \cdot f_{t} \cdot f_{s} \cdot f_{L}}$$

$$C_{req} = \frac{200}{100}$$

$$C_{req} = capacidad de carga dinámica requerida (N)$$

 $C_{reg} = 800 \text{ N}$

El rodamiento lineal con la capacidad de carga inmediatamente superior sería, por ejemplo, el R0658 252 44.

Ya que no se define claramente la posición del rodamiento lineal respecto a la dirección de la carga, se toman como base las capacidades de carga mínimas.

La capacidad de carga dinámica C_{min} = 950 N.

La capacidad de carga estática C_{0min} = 500 N.

Cálculo de la duración de vida

Cálculo de la duración de vida nominal

El rodamiento lineal R0658 252 44 seleccionado solo se puede calcular mediante la fórmula

$$L = \left(\frac{C}{F_{m}} \cdot f_{H} \cdot f_{t} \cdot f_{s}\right)^{3} \cdot 10^{5}$$

$$L = duración de vida$$
 (m)

de la duración de vida nominal en metros y con los siguientes valores:

capacidad de carga dinámica C = 950 N carga dinámica equivalente $F_m = 200 \text{ N}$ factor de dureza $f_H = 1$ factor de temperatura $f_t = 1$ factor para carrera corta $f_s = 1$

$$L = \left(\frac{950}{200} \cdot 1 \cdot 1 \cdot 1\right)^3 \cdot 10^5$$

$$L = 107 \cdot 10^5 \,\text{m}$$
(m)

La duración de vida en horas de servicio puede calcularse según la siguiente fórmula:

$$L_h = \frac{L}{2 \cdot s \cdot n_s \cdot 60}$$

$$L_h = \frac{107 \cdot 10^5}{2 \cdot 0.2 \cdot 30 \cdot 60}$$

$$L_h = 14861 \text{ h}$$

$$L_h = \frac{L}{2 \cdot s \cdot n_s \cdot 60}$$

$$L_h = \frac{107 \cdot 10^5}{2 \cdot 0.2 \cdot 30 \cdot 60}$$

$$L_h = 14861 \text{ h}$$

$$L_h = \frac{L}{2 \cdot s \cdot n_s \cdot 60}$$

$$L_h = \frac{14861 \text{ h}}{2 \cdot 0.2 \cdot 30 \cdot 60}$$

De esta manera se cubriría la duración de vida mínima requerida de 8000 horas.

(-)

(N)

(N)

Cálculo del factor de seguridad de carga estática El rodami<mark>ento</mark> lineal R0658 252 44 seleccionado solo se puede calcular mediante la fórmula

$$S_0 = \frac{C_0}{F_{0max}}$$

$$S_0 = \text{factor de seguridad de}$$

$$\text{carga estática}$$

$$C_0 = \text{capacidad de carga estática}$$

$$F_{0max} = \text{carga estática máxima}$$

de la carga de seguridad estática:

Capacidad de carga estática $C_0 = 500 \text{ N}$ Carga estática máxima $F_{0\text{max}} = 200 \text{ N}$ $S_0 = \frac{500}{200} = 2,5$ $S_0 = \text{factor de seguridad de carga estática}$ (-)

Las condiciones de uso definidas en el ejemplo de cálculo requieren de un factor de seguridad de carga estática de $S_0=2....$ 4, el cual se cumple con los valores calculados.

Lubricación

Nota

A la lubricación se aplican las prescripciones habituales para rodamientos convencionales. Los rodamientos lineales se suministran con un agente protector compatible con todos los lubricantes a base de aceite mineral. Se pueden lubricar con aceite o con grasa. Usar preferiblemente grasa, ya que ayuda a estanqueizar y además se adhiere mejor al rodamiento lineal. La relubricación solo es necesaria en intervalos muy extensos. Tenga en cuenta las indicaciones del fabricante del lubricante. Los sets lineales están diseñados para la lubricación con grasa.

Si, en casos de montaje particulares, se lubrica con aceite, comprobar si llega a todos los rodamientos.

Grasas Iubricantes

Como lubricante recomendamos una grasa según DIN 51825

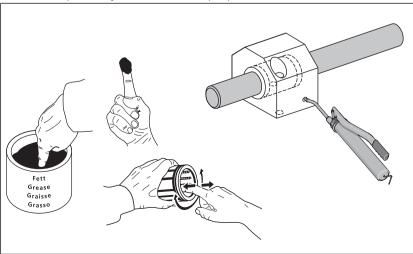
- K2K
- KP2K (para cargas elevadas).

Rexroth suministra con el Dynalub 510 una grasa de alto rendimiento a base de litio especial para técnica de movimiento lineal. Se caracteriza por una buena resistencia contra el agua y la corrosión.

Para los elementos miniatura recomendamos el Dynalub 520.

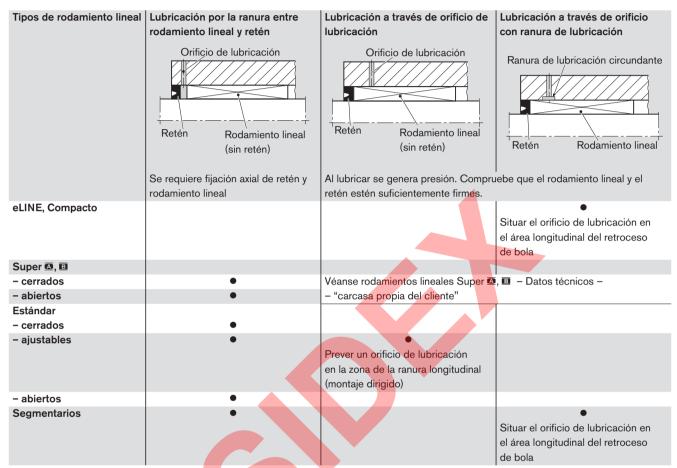
Referencia	Denominació	n según		Clase de		Clase de			Rango de		Envase	Campo de
				consist	consistencia temp		temperatura			aplicación		
	Rexroth	DIN51825	DIN51826	según	DIN 51	818	(°C)					
R3416 037 00	Dynalub 510	KP2K-20				2	-20 a	+80	1 x 400 g	Ejes Ø ≥ 8 mm		
R0419 090 01	Dynalub 520		GP00K-20			00	−20 a	+80	Set de manteni- miento 5 ml	Ejes Ø < 8 mm		
R3416 043 00	Dynalub 520		GP00K-20			00	-20 a	ı + 80	1 x 400 g	Ejes Ø < 8 mm		

Aceites lubricantes


Se requiere una gran suavidad de marcha, los rodamientos lineales pueden lubricarse con aceite.

En la siguiente tabla se recogen aceites con diferentes viscosidades:

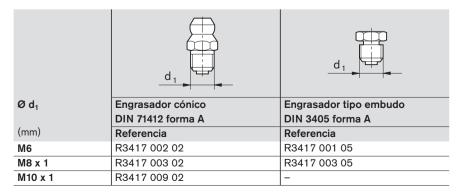
Identificación de clase de viscosidad ISO	Viscosidad cinemática a 40 °C	Aplicación
según DIN 51519	(mm ² /s)	
ISO VG 32	32	para fricción y carga bajas
ISO VG 68	68	
ISO VG 100	100	
ISO VG 320	320	con velocidad baja y/o carga
ISO VG 460	460	elevada


Primera lubricación

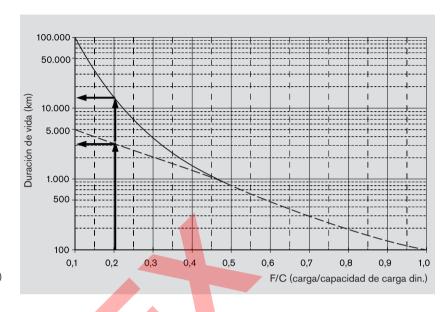
Si fuera necesario, antes de la puesta en marcha lubricar los rodamientos lineales/ sets lineales que no hayan sido lubricados por primera vez.

Lubricación

Posibilidades de relubricación en rodamientos lineales



Observaciones:


En los rodamientos lineales abiertos, asegurarse de que se encuentren suficientemente fijos. En la medida de lo posible, relubricar durante el movimiento longitudinal. El orificio y la ranura de lubricación no deben tener rebabas.

Engrasadores

Los sets lineales relubricables se suministran con orificios de lubricación para la lubricación con grasa. La siguiente tabla contiene engrasadores adecuados:

Valores orientativos para la relubricación dependiendo de la carga

— — Lubricación inicial (sin relubricación)

Relubricación con regularidad

El diagrama muestra los valores orientativos para la relubricación según la carga.

Ejemplo

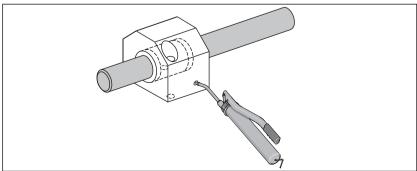
Si un rodamiento lineal eLINE se somete a una carga equivalente al 20 % de la capacidad de carga dinámica, en condiciones de ensayo la duración de vida con lubricación inicial es de 3000 km.

Si se relubrica cada 3000 km, se puede alcanzar una duración de vida de 12 500 km.

Factores de influencia

La relubricación o cambio de grasa para los rodamientos lineales depende de muchos factores.

A continuación se listan algunos factores de influencia:


- Carga
- Velocidad
- Desarrollo de movimiento
- Temperatura

Intervalos de lubricación breves en caso de:

- grandes cargas
- alta velocidad (hasta v_{máx}.)
- carrera corta (la carrera es más corta que la longitud del rodamiento lineal)
- resistencia al envejecimiento reducida del lubricante

Sets lineales relubricables

En caso de lubricación inicial y relubricación a través de orificio de lubricación: lubricar con el eje introducido hasta que salga lubricante.

Montaje

Montaje de los rodamientos lineales

En las guías con un solo eje deben montarse dos rodamientos lineales. Si se dispone de dos rodillos guía, como mínimo un eje debe estar alojado en dos rodamientos lineales.

Paralelismo

Se deberán observar estrictamente las diferencias de distancia entre dos ejes con sus respectivos rodamientos lineales, así como el paralelismo entre los ejes y los rodamientos lineales con el fin de evitar tensiones adicionales y la concomitante disminución de la duración de vida y el elevado índice de fricción.

En la tabla se indican valores orientativos para la diferencia de distancia máx. P, incluida la desviación de paralelismo en caso de guías con rodamientos lineales.

Eje	P (μm)			
Ød	sin juego		h6/H7	
	Rodamiento lineal	Rodamiento	Rodamiento lineal	Rodamiento lineal
	estándar Super	lineal eLINE,	estándar Super	Segmentario Com-
(mm)	·	Compacto		pacto
3	3	-	9	-
4	3		9	_
5	4		12	_
8	4	7	12	15
10	4	. 7	12	15
12	5	8	13	17
14	5	8	13	17
16	5	8	13	17
20	7	12	15	20
25	9	15	17	23
30	9	15	17	23
40	11	18	19	25
50	13	22	21	28
60	16	_	24	-
80	22	_	30	_

Temperatura de servicio

-10 °C hasta +80 °C

Solo se admiten temperaturas mayores en rodamientos lineales Estándar sin retenes y con jaulas de acero. De lo contrario, se producen reducciones de la capacidad de carga. Cuando se produzcan temperaturas bajo cero, debe evitarse la formación de hielo.

Flexión de ejes

En construcciones rígidas de los rodamientos lineales (carcasa, etc.) y grandes longitudes de ejes, la duración de vida de los rodamientos lineales sin soportes se ve influenciada por la flexión de los ejes y por la consiguiente presión de los bordes (esto no ocurre en los rodamientos lineales Super , w su hasta 30'). Para el cálculo de la flexión de ejes: véanse los datos técnicos de los ejes de acero.

Ejecuciones anticorrosivas

Los aceros anticorrosivos son aceros según ISO 683-17 / EN 10088. En ambientes especialmente corrosivos, las piezas deben probarse en condiciones de aplicación. Utilizar los agentes conservantes y lubricantes adecuados.

Alojamiento de la carcasa

El juego puede influirse mediante la selección de la tolerancia de ejes y de taladros en todos los rodamientos lineales (excepción: rodamientos lineales estándar cerrados).

Para el eje h6 es válido lo siguiente:

Para el juego normal según DIN, el taladro de la carcasa se realiza con la tolerancia H7. En taladros más grandes o pequeños, el juego cambia correspondientemente. Para un guiado con poco juego recomendamos taladros de la tolerancia K7. Para una precarga suave son adecuadas las tolerancias de taladro M7. (La precarga reduce la vida útil de los ejes y los rodamientos lineales). Los rodamientos lineales eLINE con taladro de carcasa H7 producen guiados sin juego.

Juego radial

Los valores de juego radial indicados en las tablas, tanto para rodamientos como para sets lineales, se calculan estadísticamente y corresponden a los valores que pueden darse en la práctica.

Ajuste del juego radial

Para guías sin juego se deberá ajustar el juego radial de los rodamientos lineales utilizando el tornillo central de ajuste situado en el alojamiento, de tal forma que, al girar el eje, se perciba una ligera resistencia. En casos de montaje con vibraciones, a continuación asegurar el tornillo de ajuste.

El juego radial del rodamiento lineal estándar cerrado no es ajustable.

Ajuste de la tensión previa

Para obtener la tensión previa, debe llevarse a cabo el ajuste descrito arriba utilizando un eje de ajuste con una reducción de la tensión previa equivalente al valor que se desea obtener.

Medida de altura

En las tablas de los sets lineales se indican los valores de tolerancia de las medidas de altura "H". Estos valores se calculan estadísticamente y corresponden a los valores que caben esperar en la práctica.

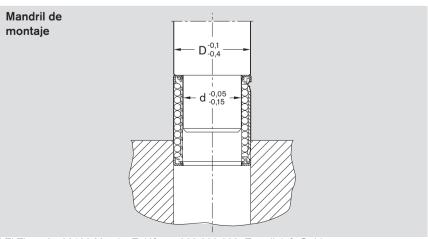
Fijación

Véanse los "Datos técnicos" para los distintos rodamientos lineales.

Instrucciones de montaje

El taladro de la carcasa debe estar achaflanado. Los rodamientos lineales pequeños pueden montarse a mano (a excepción de los rodamientos lineales eLINE, Compactos a partir del diámetro de eje 12).

Con diámetros mayores, así como con el rodamiento lineal eLINE y el Compacto, debe utilizarse un mandril de montaje. Al hacerlo, debe observarse que las fuerzas de compresión no actúen sobre las juntas anulares ni los anillos de sujeción de acero (rodamiento lineal estándar), pues de lo contrario podrían producirse daños en las jaulas de las bolas. Si el rodamiento lineal eLINE o compacto se inclina ligeramente al introducirlo en el taladro de la carcasa, se corregirá por sí solo al continuar presionando.


No es necesario retirarlo e introducirlo nuevamente.

Los extremos de los ejes deben estar achaflanados. El rodamiento no debe inclinarse al colocarlo en el eje.

Los impactos con martillo sobre el rodamiento lineal, los retenes o las jaulas provocan daños.

Los rodamientos lineales con retenes no deben montarse sobre cantos vivos de ejes, ya que los labios de estanqueidad podrían dañarse.

Encontrará indicaciones sobre el montaje de rodamientos lineales Antigiro en el apartado "Montaje" del correspondiente rodamiento lineal.

Tablas con dimensiones

Medidas de interior

Range medie nomin	das	Medida (μm) =	ıs 0,001 m	m													
(mm)		G7	H5	H6	H7	Н8	H11	H12	H13	JS6	JS7	JS14	K6	K7	M6	M7	P9
>	3	+16	+5	+8	+12	+18	+75	+120	+180	+4	+6	+150	+2	+3	-1	0	-12
\leq	6	+4	0	0	0	0	0	0	0	-4	-6	-150	-6	-9	-9	-12	-42
>	6	+20	+6	+9	+15	+22	+90	+150	+220	+4,5	+7,5	+180	+2	+5	-3	0	-15
\leq	10	+5	0	0	0	0	0	0	0	-4,5	-7,5	-180	-7	-10	-12	-15	-51
>	10	+24	+8	+11	+18	+27	+110	+180	+270	+5,5	+9	+215	+2	+6	-4	0	-18
\leq	18	+6	0	0	0	0	0	0	0	-5,5	-9	-215	-9	-12	-15	-18	-61
>	18	+28	+9	+13	+21	+33	+130	+210	+330	+6,5	+10,5	+260	+2	+6	-4	0	-22
≤	30	+7	0	0	0	0	0	0	0	-6,5	-10,5	-260	-11	-15	-17	-21	-74
>	30	+34	+11	+16	+25	+39	+160	+250	+390	+8	+12,5	+310	+3	+7	-4	0	-26
≤	50	+9	0	0	0	0	0	0	0	-8	-12,5	-310	-13	-18	-20	-25	-88
>	50	+40	+13	+19	+30	+46	+190	+300	+460	+9,5	+15	+370	+4	+9	-5	0	-32
≤	80	+10	0	0	0	0	0	0	0	-9,5	-15	-370	-15	-21	-24	-30	-106
>	80	+47	+15	+22	+35	+54	+220	+350	+540	+11	+17,5	+435	+4	+10	-6	0	-37
≤	120	+12	0	0	0	0	0	0	0	-11	-17,5	-435	-18	-25	-28	-35	-124
>	120	+54	+18	+25	+40	+63	+250	+400	+630	+12,5	+20	+500	+4	+12	-8	0	-43
≤	180	+14	0	0	0	0	0	0	0	-12,5	-20	-500	-21	-28	-33	-40	-143
>	180	+61	+20	+29	+46	+72	+290	+460	+720	+14,5	+23	+575	+5	+13	-8	0	-50
≤	250	+15	0	0	0	0	0	0	0	-14,5	-23	-575	-24	-33	-37	-46	-165

Medidas de exterior

Rang	o de	Medida	S														
medi			0,001 m	m													
nomi	nales																
(mm)		g7	h5	h6	h7	h8	h11	h12	h13	js6	js7	js14	k6	k7	m6	m7	р9
>	3	-4	0	0	0	0	0	0	0	+4	+6	+150	+9	+13	+12	+16	+42
\leq	6	-16	-5	-8	-12	-18	-75	-120	-180	-4	-6	-150	+1	+1	+4	+4	+12
>	6	-5	0	0	0	0	0	0	0	+4,5	+7,5	+180	+10	+16	+15	+21	+51
\leq	10	-20	-6	-9	-15	-22	-90	-150	-220	-4,5	-7,5	-180	+1	+1	+6	+6	+15
>	10	-6	0	0	0	0	0	0	0	+5,5	+9	+215	+12	+19	+18	+25	+61
\leq	18	-24	-8	-11	-18	-27	-110	-180	-270	-5,5	-9	-215	+1	+1	+7	+7	+18
>	18	-7	0	0	0	0	0	0	0	+6,5	+10,5	+260	+15	+23	+21	+29	
\leq	30	-28	-9	-13	-21	-33	-130	-210	-330	-6,5	-10,5	-260	+2	+2	+8	+8	
>	30	-9	0	0	0	0	0	0	0	+8	+12,5	+310	+18	+27	+25	+34	_
\leq	50	-34	-11	-16	-25	-39	-160	-250	-390	-8	-12,5	-310	+2	+2	+9	+9	
>	50	-10	0	0	0	0	0	0	0	+9,5	+15	+370	+21	+32	+30	+41	_
\leq	80	-40	-13	-19	-30	-46	-190	-300	-460	-9,5	-15	-370	+2	+2	+11	+11	
>	80	-12	0	0	0	0	0	0	0	+11	+17,5	+435	+25	+38	+35	+48	_
\leq	120	-47	-15	-22	-35	-54	-220	-350	-540	-11	-17,5	-435	+3	+3	+13	+13	
>	120	-14	0	0	0	0	0	0	0	+12,5	+20	+500	+28	+43	+40	+55	_
\leq	180	-54	-18	-25	-40	-63	-250	-400	-630	-12,5	-20	-500	+3	+3	+15	+15	
>	180	-15	0	0	0	0	0	0	0	+14,5	+23	+575	+33	+50	+46	+63	
≤	250	-61	-20	-29	-46	-72	-290	-460	-720	-14,5	-23	-575	+4	+4	+17	+17	

Rodamientos lineales compactos, eLINE

Sinopsis del producto

Las ventajas

- Rodamiento lineal muy económico para requerimientos generales.
- Dimensiones reducidas para construcciones especialmente compactas.
- Anillos de sujeción de metal integrados con un diámetro exterior con un sobredimensionamiento de aprox. 0,1 mm (diámetro de ejes de 12 a 50), para un asiento seguro en el taladro de la carcasa.
- Montaje sencillo: simplemente presionar, no requieren una fijación adicional.
- Alta capacidad de carga y larga duración de vida gracias a los segmentos de acero templado con lubricación de las bolas en la rodadura.
- Alta velocidad (5 m/s).
- Muchos espacios internos como depósitos de grasa que permiten largos intervalos de lubricación o una lubricación de por vida.
- Los espacios internos también sirven para retener la suciedad que haya podido entrar, evitando que los rodamientos lineales se atasquen.
- Retenes integrados, retenes adicionales o sin retenes.
- También anticorrosivos para la industria médica, química y alimentaria.
- Sets lineales con carcasa de aluminio.
- Lubricados de por vida (eLINE).

Diámetro de eje 8 y 10

Diámetro de eje de 12 a 50

Aclaración de la abreviación

Ejemplo de rodamiento lineal:

Rodamiento lineal eLINE KBC-12-DD-RT-NR-G

Definición de la abreviación			KB	С	12	DD	RT	NR	G
Tipo	Rodamiento lineal	= KB							
Serie	Compacto	= C							
Diámetro de eje		= 12							
Juntas	con 2 juntas	= DD							
	con 1 junta	= D							
	sin junta	=							
Juego radial	juego radial reducido (rodamiento lineal eLINE)	= RT					'		
	juego radial normal (rodamiento lineal Compacto)	=							
Versión del rodamiento lineal	Anticorrosivo	= NR							
	Normal	=							
Lubricación del rodamiento lineal	Engrasado	= G							
	No engrasado	=							

Ejemplo de set lineal:

Set lineal con rodamiento lineal eLINE LSACET-12-DD-RT-NR-G

Definición de la abreviación				LS	Α	С	ΕТ	12	DD	RT	NR	G
Tipo	Set lineal	=	LS									
Material (carcasa)	Aluminio	=	Α		•							
Serie	Compacto	=	С									
Carcasa	Ajustable	=	E									
	Normal	=										
	Tandem	=	T									
Diámetro de eje		=	12									
Juntas	con 2 juntas	=	DD									
	sin junta	=										
Juego radial	juego radial reducido (rodamiento lineal eLINE)	=	RT									
	juego radial normal (rodamiento lineal Compacto)	=										
Versión del rodamiento lineal	Anticorrosivo	=	NR									
	Normal	=										
Lubricación del rodamiento lineal	Engrasado	=	G									_
	No engrasado	_										İ

Rodamientos lineales compactos, eLINE

Datos técnicos, montaje

Tenga también en cuenta las bases técnicas generales, así como las indicaciones de lubricación y de montaje.

Estanqueidad

La ejecución estanca contiene retenes integrados.

También se pueden suministrar retenes por separado (no se requiere ninguna fijación).

Fricción

Los coeficientes de fricción μ de los rodamientos lineales sin estanqueizar son, con lubricación de aceite, de 0,001 – 0,004.

Bajo carga elevada, el coeficiente de fricción es mínimo; sin embargo, si las cargas son muy pequeñas, las fricciones pueden ser mayores que las indicadas.

En la tabla se muestran las fuerzas de fricción de los rodamientos lineales con retenes integrados en ambos lados y sin carga radial. Estas dependen de la velocidad y la lubricación.

Eje Ø d	Fuerza de arranque ¹⁾	Fuerza de ficción ¹⁾				
(mm)	Valor orientativo (N)	Valor orientativo (N)				
8	0,8	0,4				
10	1,0	0,5				
12	1,5	0,8				
14	1,8	0,9				
16	2,0	1,0				
20	3,0	1,5				
25	4,5	2,0				
30	6,0	2,5				
40	8,0	3,0				
50	10,0	4,0				

1) Si se utilizan retenes aparte, los valores deben multiplicarse por el factor 1,5.

Velocidad

 $v_{max} = 5 \text{ m/s}$

Aceleración

 $a_{max} = 150 \text{ m/s}^2$

Temperatura de servicio

De -10 °C a 80 °C

Lubricación inicial

A los rodamientos lineales compactos no se les aplica una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 22.

Los rodamientos lineales eLINE vienen ya con una lubricación inicial.

Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.

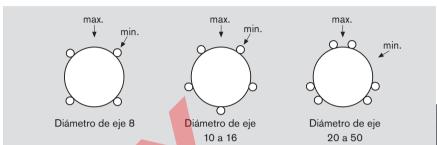
Montaje

Los rodamientos lineales se montan con un mandril de presión (véanse las "Instrucciones de montaje").

Si los rodamientos lineales se inclinan ligeramente al introducirlos en el taladro de la carcasa, se corregirán por sí solos al continuar presionando. No es necesario retirar e introducir el rodamiento lineal nuevamente.

Fijación

Diámetros de eje 8 y 10: El casquillo exterior de plástico está fabricado con sobredimensio-

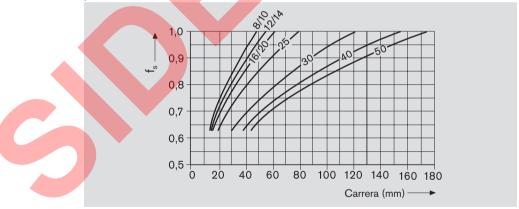

Para aplicaciones con vibraciones o altas aceleraciones es necesario una fijación adicional. Diámetros de eje de 12 a 50: El diámetro exterior de los anillos de sujeción de metal está fabricado con sobredimensionamiento.

No se requiere de una fijación adicional (longitud del taladro \geq C).

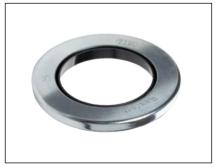
Influencia de la dirección de carga en la capacidad de carga

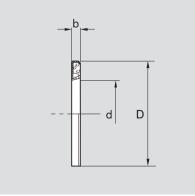
Las capacidades de carga especificadas deben seleccionarse según el montaje montaje en posición "min" o "máx" y basarse en los cálculos.

Si la dirección de carga está claramente definida y el montaje de los rodamientos lineales es posible en la posición "max", pueden utilizarse las capacidades de carga C_{max} (capacidad de carga dinámica) y $C_{0\text{max}}$ (capacidad de carga estática). Si no es posible un montaje dirigido o la dirección de carga no está definida, deberá partirse de las capacidades de carga mínimas.



Reducción de la capacidad de carga en caso de carrera corta


En caso de carrera corta, la duración de vida de los ejes es menor que la de los rodamientos lineales Super.


Por tanto, las capacidades de carga C indicadas en las tablas deben multiplicarse por el factor f_s.

Retenes Construcción

- Cápsula metálica, galvanizada
- Retén de elastómero

Eje Ø d	Referencia	Medi (mm)	das	Peso (g)
(mm)	Retenes	D ¹⁾	b	
12	R1331 812 10	19	3	1,1
16	R1331 816 10	24	3	1,5
20	R1331 820 10	28	4	2,4
25	R1331 825 10	35	4	4,4
30	R1331 830 10	40	4	5,0
40	R1331 840 10	52	5	5,0
50	R1331 850 10	62	5	10,0

 El diámetro exterior D está fabricado con un sobredimensionamiento de aprox.
 0,1 mm. No se requiere de una fijación adicional.

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Rodamientos lineales compactos, eLINE

Rodamientos lineales eLINE, R0658

Construcción

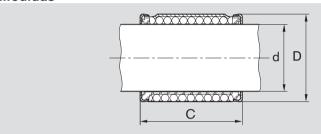
- Jaula de guiado POM.
- Con retenes integrados.
- Bolas de acero de rodamientos.
- Segmentos de acero templados.
- Anillos de sujeción de metal (desde diámetro de eje 12)
- Con juego radial reducido para aplicaciones en las que se desean alojamientos sin juego con taladro H7.
- Lubricación inicial con Dynalub 510.
- También en versión anticorrosiva: Segmentos de acero de 1.4037. Bolas de 1.3541.

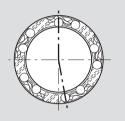
Rodamientos lineales Compactos, R0658

Construcción

- Con juego radial **normal**.
- No engrasado
- Con o sin retenes integrados.

Eje	Referencia sin retenes		Peso
Ød	Rodamientos lineales compactos		
(mm)	normal	antico <mark>rrosi</mark> vos	
	KBC	KBCNR	(kg)
8	R0658 008 00	R0658 008 30	0,011
10	R0658 010 00	R0658 010 30	0,014
12	R0658 012 00	R0658 012 30	0,016
14	R0658 014 00	R0658 014 30	0,018
16	R0658 016 00	R0658 016 30	0,025
20	R0658 020 00	R0658 020 30	0,028
25	R0658 025 00	R0658 025 30	0,058
30	R0658 030 00	R0658 030 30	0,080
40	R0658 040 00	R0658 040 30	0,140
50	R0658 050 00	R0658 050 30	0,170


Eje	Referencia con 2	retenes integrados			Peso
Ød	Rodamientos line	ales eLINE	Rodamientos line	eales compactos1)	
	(juego radial redu	cido, con lubricación)	(juego radial nor		
	KBCDD-RT-G	KBCDD-RT-NR-G	KBCDD	KBCDD-NR	
(mm)	normal	anticorrosivos	normal	anticorrosivos	(kg)
8	R0658 262 44	R0658 262 34	R0658 208 40	R0658 208 30	0,011
10	R0658 261 44	R0658 261 34	R0658 210 40	R0658 210 30	0,014
12	R0658 251 44	R0658 251 34	R0658 212 40	R0658 212 30	0,016
14	_	_	R0658 214 40	R0658 214 30	0,018
16	R0658 252 44	R0658 252 34	R0658 216 40	R0658 216 30	0,025
20	R0658 253 44	R0658 253 34	R0658 220 40	R0658 220 30	0,028
25	R0658 254 44	R0658 254 34	R0658 225 40	R0658 225 30	0,058
30	R0658 255 44	R0658 255 34	R0658 230 40	R0658 230 30	0,080
40	R0658 256 44 R0658 256 34		R0658 240 40	R0658 240 30	0,140
50	_	_	R0658 250 40	R0658 250 30	0,170


¹⁾ Con un retén integrado: R0658 1.. 40 o R0658 1.. 30.

Ejemplo de aclaración de abreviación

KB	С	12	DD	RT	G
Rodamiento lineal	Compacto	Ø12	Con 2 juntas	Juego radial reducido	Engrasado

Medidas

Medida	s (mm)		Hileras	Juego radial	(μm)	Capacida	des de ca	rga (N)					
			de	Eje/taladro		normal				inoxidable	е		
			bolas				din. C		estát. C ₀		din. C		estát. C ₀
Ød	D	С		eLINE	Compacto	min	máx	min	máx	min	máx	min	máx
		±0,2		h6/H7	h6/H7								
8	15	24	4	+5	+25	500	580	350	500	350	410	280	400
				-18	+2								
10	17	26	5	+5	+25	600	720	410	600	420	500	330	480
				-18	+2								
12	19	28	5	+8	+32	730	870	420	620	510	610	340	500
				-24	0								
14	21	28	5	-	+32	760	900	430	630	530	630	340	500
					0								
16	24	30	5	+8	+32	950	1120	500	730	660	780	400	580
				-24	0								
20	28	30	6	+9	+33	1120	1410	610	900	780	990	480	720
				-25	-1								
25	35	40	6	+12	+36	2330	2930	1310	1950	1630	2050	1050	1560
				-24	0								
30	40	50	6	+12	+36	3060	3250	1880	2790	2140	2700	1510	2230
				-24	0								
40	52	60	6	+18	+42	5040	6380	3140	4650	3520	4470	2510	3720
				-25	-1								
50	62	70	6	-	+42	5680	7180	3610	5350	3970	5030	2890	4280
					-1								

El cálculo de la capacidad de carga dinámica se basa en 100 000 m de carrera. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Sets lineales eLINE, Compactos

Sets lineales eLINE, R1027 cerrados, normales o anticorrosivos

Construcción

- Con rodamiento lineal eLINE
- Carcasa de precisión en construcción ligera (aluminio)
- Con retenes integrados.
- Con juego radial reducido
- Lubricación inicial con Dynalub 510.
- También en versión anticorrosiva con **KBC-NR**

Sets lineales Compactos, R1027 cerrados, normales o anticorrosivos

Construcción

- Con rodamiento lineal compacto
- Carcasa de precisión en construcción ligera (aluminio)
- Con retenes integrados.
- Con juego radial normal
- Lubricación inicial con Dynalub 510.
- También en versión anticorrosiva con **KBC-NR**

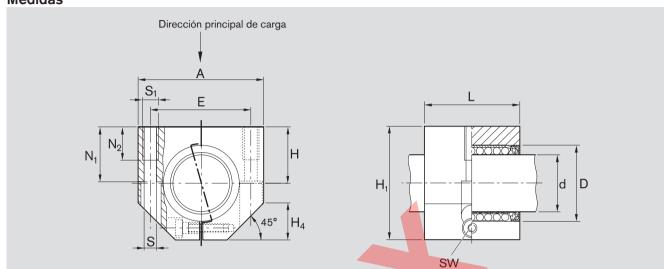
Sets lineales Compactos, R1028 ajustables, normales

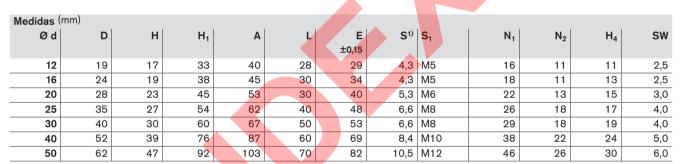
Construcción

- Con rodamiento lineal compacto
- Carcasa de precisión en construcción ligera (aluminio)
- Con retenes integrados.
- Ajuste sin juego
- Lubricación inicial con Dynalub 510.

Eje	Referencia de set lineal eLINE	Referencia de set lineal eLINE					
Ød	con juego radial reducido, con lubrica <mark>ción</mark>						
	normal	anticorrosivos					
(mm)	LSACDD-RT-G	LSACDD-RT-NR-G	(kg)				
12	R1027 251 44	R1027 251 34	0,08				
16	R1027 252 44	R10 <mark>27 2</mark> 52 34	0,11				
20	R1027 253 44	R102 <mark>7 25</mark> 3 34	0,15				
25	R1027 254 44	R1027 254 34	0,27				
30	R1027 255 44	R1027 255 34	0,40				
40	R1027 256 44	R1027 256 34	0,75				

Eje	Referencias de set linea	I Compacto	Peso
Ød	con lubricación		
	normal	anticorrosivos	
(mm)	LSACDD-G	LSACDD-NR-G	(kg)
12	R1027 212 44	R1027 212 34	0,08
16	R1027 216 44	R1027 216 34	0,11
20	R1027 220 44	R1027 220 34	0,15
25	R1027 225 44	R1027 225 34	0,27
30	R1027 230 44	R1027 230 34	0,40
40	R1027 240 44	R1027 240 34	0,75
50	R1027 250 44	R1027 250 34	1,20




Eje	Referencias de set lineal Compacto	Peso
Ød	normal, sin lubricación	
(mm)	LSACEDD-G	(kg)
12	R1028 212 44	0,08
16	R1028 216 44	0,11
20	R1028 220 44	0,15
25	R1028 225 44	0,27
30	R1028 230 44	0,40
40	R1028 240 44	0,75
50	R1028 250 44	1,20

Ejemplo de aclaración de abreviación

LS	Α	С	12	DD	RT	NR	G
Set lineal	Aluminio	Compacto	Ø12	Con 2 juntas	Juego radial reducido	Anticorrosivo	Engrasado

Medidas

Ød	Juego radi	i ai (μm)		Tolerancia	Tolerancia para H ²⁾ (μm) Caps. de carga ³⁾ (N)				
	R1027	R1027	R1028	028 R1027 R1028		normal		anticorrosivos	
	eLINE	Compacto							
	compacto								
(mm)	h6	h6				din. C	estát. C ₀	din. C	estát. C ₀
12	+8	+32		+24	+12	810	490	570	390
	-24	0		0	-12				
16	+8	+32	inferior, fijo	+24	+12	1050	570	730	460
	-24	0	infel fijo	0	-12				
20	+9	+33	mite i está	+25	+13	1410	900	990	720
	-25	-1	(límite i o está	0	-12				
25	+12	+36	eje h5 (lí cuando	+25	+13	2930	1950	2050	1560
	-24	0	eje h5 cuand	0	-12				
30	+12	+36		+25	+13	3850	2790	2700	2230
	-24	0	con un n juego	0	-12				
40	+18	+42	a con un e sin juego	+26	+14	6380	4650	4470	3720
	-25	-1		0	-12				
50	+42	+42	de fábric ajustado	+14	+14	7180	5350	5030	4280
	-1	-1	de aju	-12	-12				

- 1) Tornillos de fijación ISO 4762-8.8.
- 2) Referido a Ø d.
- 3) Las capacidades de carga son válidas para la dirección principal de carga. Si la dirección de carga no se corresponde con la dirección principal de carga, las capacidades de carga se deberán multiplicar por los siguientes factores:

Ø d 12 y 16:
$$f = 0.90, f_0 = 0.86$$

Ø d 20 hasta 50: f = 0.79, $f_0 = 0.68$

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Sets lineales eLINE, Compactos

Sets lineales eLINE, R1029 Tandem cerrados, normales o anticorrosivos

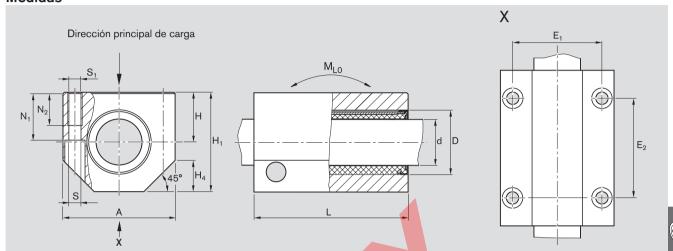
Construcción

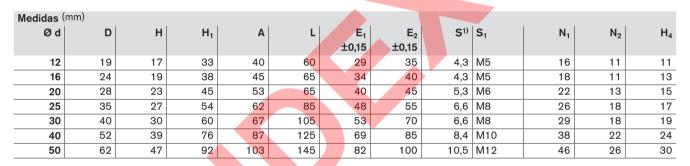
- Con dos rodamientos lineales eLINE
- Carcasa de precisión Tandem en construcción ligera (aluminio)
- Con retenes integrados.
- Con juego radial reducido
- Lubricación inicial con Dynalub 510.
- También en versión anticorrosiva con KBC-NR

Sets lineales compactos, R1029 Tandem cerrados, normales o anticorrosivos

Construcción

- Con dos rodamientos lineales compactos
- Carcasa de precisión Tandem en construcción ligera (aluminio)
- Con retenes integrados
- Con juego radial normal
- Lubricación inicial con Dynalub 510.
- También en versión anticorrosiva con KBC-NR


Eje Ø d	Referencia de set lineal eLINE con juego radial reducido, con fubricación					
	normal	anticorrosivos				
(mm)	LSACTDD-RT-G	LSACTDD-RT-NR-G	(kg)			
12	R1029 251 44	R10 <mark>29 2</mark> 51 34	0,17			
16	R1029 252 44	R102 <mark>9 25</mark> 2 34	0,24			
20	R1029 253 44	R1029 253 34	0,31			
25	R1029 254 44	R1029 254 34	0,57			
30	R1029 255 44	R1029 255 34	0,80			
40	R1029 256 44	R1029 256 34	1,54			


Eje	Referencias de set lineal Compacto					
Ød	con lubricación					
	normal	anticorrosivos				
(mm)	LSACTDD-G	LSACTDD-NR-G	(kg)			
12	R1029 212 44	R1029 212 34	0,17			
16	R1029 216 44	R1029 216 34	0,24			
20	R1029 220 44	R1029 220 34	0,31			
25	R1029 225 44	R1029 225 34	0,57			
30	R1029 230 44	R1029 230 34	0,80			
40	R1029 240 44	R1029 240 34	1,54			
50	R1029 250 44	R1029 250 34	2,45			

Ejemplo de aclaración de abreviación

LS	Α	С	Т	12	DD	RT	NR	G
Set lineal	Aluminio	Compacto	Tandem	Ø12	Con 2 juntas	Juego radial reducido	Anticorrosivo	Engrasado

Encontrará más información acerca de la abreviación en Página 28.

Ød		adial (μm)	Tolerancia	Caps. de	e carga 3)	(N)		Momento de
	Eje		para H ²⁾	normal		anticorro	sivos	vuelco (Nm)
	R1029	R1029						estát.
	eLINE	Compacto						
(mm)	h6	h6	(µm)	din. C	estát. C ₀	din. C	estát. C ₀	M _{Lo}
12	+8	+32	+24	1310	980	920	780	13
	-24	0	0					
16	+8	+32	+24	1700	1140	1180	920	18
	-24	0	0					
20	+9	+33	+25	2290	1800	1610	1440	21
	-25	-1	0					
25	+12	+36	+25	4760	3900	3330	3120	59
	-24	0	0					
30	+12	+36	+25	6250	5580	4385	4460	103
	-24	0	0					
40	+18	+42	+26	10360	9300	7260	7440	204
	-25	-1	0					
50		+42	+14	11660	10700	8170	8560	271
		-1	-12					

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

- 1) Tornillos de fijación ISO 4762-8.8.
- 2) Referido a Ø d.
- 3) Las capacidades de carga son válidas para la dirección principal de carga. Si la dirección de carga no se corresponde con la dirección principal de carga, las capacidades de carga se deberán multiplicar por los siguientes factores:

Ø d 12 y 16: $f = 0.90, f_0 = 0.86$

Ø d 20 hasta 50: $f = 0.79, f_0 = 0.68$

Rodamientos lineales Super 4 y 1

Sinopsis del producto

Las ventajas

- Rodamiento lineal muy económico para requerimientos generales
- Insertos de acero con ranuras guía rectificadas y entradas biseladas de las bolas para una marcha extraordinariamente silenciosa y una gran duración de vida
- Rodamiento lineal Super compensa flexiones de ejes y errores de alineación.
- Rodamiento lineal Super si sin compensación de errores de alineación para pequeños momentos de vuelco en sentido axial
- Gran velocidad de desplazamiento (hasta 5 m/s)
- Retenes integrados, retenes previos o sin retenes
- Rodamiento lineal abierto sobre ejes completamente apoyados para aplicaciones donde otros rodamientos lineales se desformarían a causa de la imprecisión de las construcciones de base
- Junta longitudinal opcional para rodamiento lineal abierto
- Sets lineales con carcasa de aluminio o de fundición

Rodamientos lineales Super 🖸 y 🖪

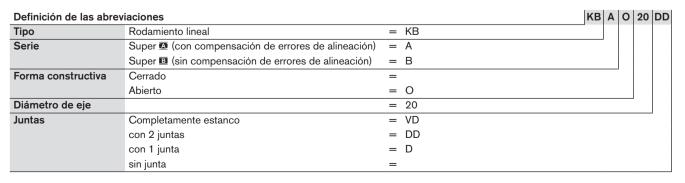
con o sin compensación de errores de alineación

Super

(cerrado)

Super (abierto)

Super (cerrado)



Super (abierto)

Aclaración de la abreviación

Ejemplo de rodamiento lineal: Rodamientos lineales Super 🖸

KBA-O-20-DD

Ejemplo de set lineal: Set lineal con rodamiento lineal Super b LSA-OE-B-20-DD-NR

Definición de las abreviaciones	20.1 02 2 20 22 1			LS	Α	0	Е	B	20	DD
Tipo	Set lineal	=	LS					Т		
Material (carcasa) (solo en set lineal)	Aluminio	=	Α		·					
	Fundición	=	G		İ					
	Acero	=	S		İ					
Forma constructiva	Cerrado	=								
	Abierto	=	0							
	Con abertura lateral	=	S							
	Ajustable	=	Ε							
	Brida	=	F							
	Tándem	=	Τ							
Serie	Super (con compensación de errores de alineación)	=	Α							
	Super (sin compensación de errores de alineación)	=	В							
Diámetro de eje		=	20							
Juntas	con 2 juntas	=	DD						ď	
	sin junta	=								

Rodamientos lineales Super 4 y

Datos técnicos

Tenga también en cuenta las bases técnicas generales, así como las indicaciones de lubricación y de montaje.

Estanqueidad

Los rodamientos lineales Super se pueden suministrar tanto con retenes integrados como con retenes adicionales. Los retenes adicionales son especialmente adecuados para casos de aplicación con mucha suciedad. Cuando hay mucha suciedad se requiere de una estanqueidad suplementaria (p. ej. fuelles, cubiertas telescópicas). Los rodamientos lineales Super abiertos también pueden suministrarse completamente estancos (con junta longitudinal); en este caso, la fricción es mayor.

Fricción

Los coeficientes de fricción μ de los rodamientos lineales Super sin retenes son, con lubricación de aceite, de 0,001 - 0,0025.

Bajo cargas elevadas, la fricción es mínima. Sin embargo, si las cargas son muy pequeñas, las fricciones pueden ser mayores que los valores indicados. En la tabla se muestran las fuerzas de fricción de los rodamientos lineales Super con retenes integrados en ambos lados y

Dependen de la velocidad y la lubricación.

Eje Ø d	cerrados y abiertos	los	abiertos completamente estancos						
- u	Fuerza de arranque ¹⁾		Fuerza de arranque	A CONTRACTOR OF THE CONTRACTOR					
(mm)	Valor orientativo (N)	Valor orientativo (N)	Valor orientativo (N)	Valor orientativo (N)					
10	1,0	0,5	-	_					
12	1,5	0,8	6	3					
16	2,0	1,0	9	4					
20	3,0	1,5	10	5					
25	4,5	2,0	14	6					
30	6,0	2,5	18	8					
40	8,0	3,0	24	10					
50	10,0	4,0	30	12					

¹⁾ Con retenes aparte, los valores se deben multiplicar por el factor 1,5.

Velocidad

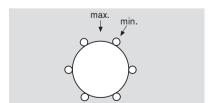
sin carga radial.

 $v_{max} = 3 \text{ m/s}$

Son posibles velocidades de hasta 5 m/s. La duración de vida está limitada a causa del elevado desgaste de las piezas de plástico. Los ensayos han dado como resultado de 50 a 100 ·105 m de recorrido sin fallos.

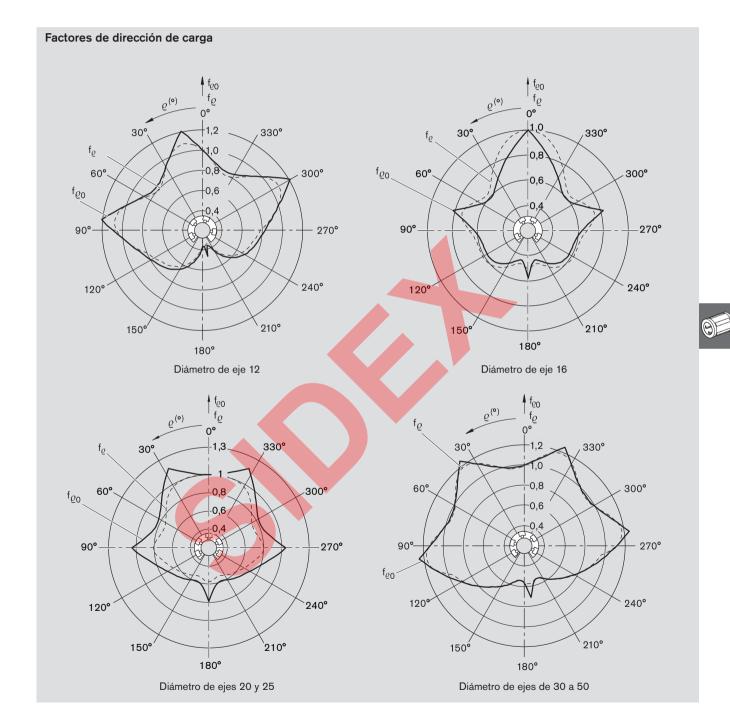
Aceleración

 $a_{max} = 150 \text{ m/s}^2$


Temperatura de servicio

-10 °C hasta 80 °C

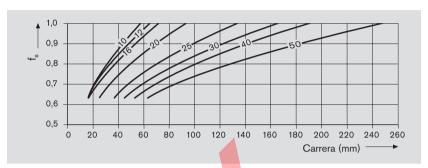
Influencia de la dirección de carga


en la capacidad de carga de los rodamientos lineales Super cerrados Las capacidades de carga especificadas deben seleccionarse según el montaje en posición "min" o "máx" y basarse en los cálculos.

Si la dirección de carga está claramente definida y el montaje de los rodamientos lineales Super es posible en la posición "max", pueden utilizarse las capacidades de carga C_{max} (capacidad de carga dinámica) y $C_{0\,\text{max}}$ (capacidad de carga estática). Si no es posible un montaje dirigido o la dirección de carga no está definida, deberá partirse de las capacidades de carga mínimas.

en la capacidad de carga de los rodamientos lineales Super abiertos Las capacidades de carga C y C_0 son válidas para la dirección principal de carga $\varrho=0^\circ$. Para todas las demás direcciones de carga, las capacidades de carga deben multiplicarse por los factores f_ℓ (capacidad de carga dinámica C) o $f_{\ell 0}$ (capacidad de carga estática C_0).

Montando correctamente los rodamientos lineales Super puede reducirse el factor de disminución de la capacidad de carga (véase el set lineal con abertura lateral).

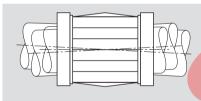

Rodamientos lineales Super
v
u

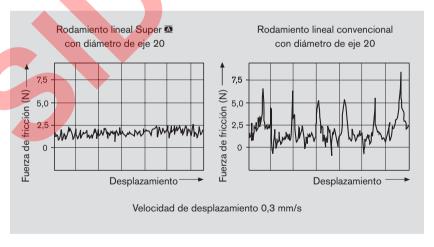
Datos técnicos

Disminución de capacidad de carga con carrera corta

En caso de carrera corta, la duración de vida de los ejes es menor que la de los rodamientos lineales Super.

Por tanto, las capacidades de carga C indicadas en las tablas deben multiplicarse por el factor $f_{\rm s}$.


Disminución de capacidad de carga con cargas elevadas


Si la carga en el rodamiento lineal Super

es F > 0,5 x C, disminuye la capacidad de carga dinámica C.

Compensación de errores de alineación en rodamientos lineales Super

La compensación de errores de alineación de los insertos de acero y las pistas de rodadura rectificadas permite una marcha especialmente silenciosa. El diagrama de proceso muestra una comparativa frente a un rodamiento lineal convencional. La base para el ejemplo es una carga de 800 N y un error de alineación de aprox. 8' (causado por la flexión del eje).

Debido a la compensación de errores de alineación deben utilizarse, por lo menos, dos rodamientos lineales Super en uno de los dos ejes.

Funcionamiento en condiciones especiales

Para casos de aplicación con lubricantes de refrigeración acuosos, recomendamos utilizar los siguientes tipos de rodamientos lineales:

Rodamientos lineal Estándar

En ambientes constantemente húmedos o muy húmedos (vapor de agua, condensación) recomendamos utilizar los siguientes tipos de rodamientos lineales anticorrosivos con insertos de acero anticorrosivos según ISO 683-17 / EN 10088:

- rodamiento lineal Segmentario (ejecución anticorrosiva),
- rodamiento lineal eLINE (ejecución anticorrosiva),
- rodamiento lineal Compacto (ejecución anticorrosiva),
- rodamiento lineal Estándar (ejecución anticorrosiva).

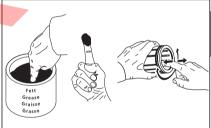
Montaje

Juego radial

Los valores indicados en las tablas para el juego radial están calculados estadísticamente y corresponden a los valores que se pueden dar en la práctica.

Ajuste del juego radial

El juego radial puede ajustarse en todos los rodamientos lineales. Si, p. ej., se requiere un guiado sin juego, debe utilizarse el tornillo de ajuste situado en la carcasa (véanse también los sets lineales) para reducir el juego radial hasta que, al girar el eje, se note una ligera resistencia.


En casos de montaje con vibraciones, a continuación debe asegurarse el tornillo de ajuste.

Ajuste de la precarga

En caso de precarga, debe llevarse a cabo el ajuste descrito arriba utilizando un eje de ajuste con una reducción de la precarga equivalente al valor que se desea obtener.

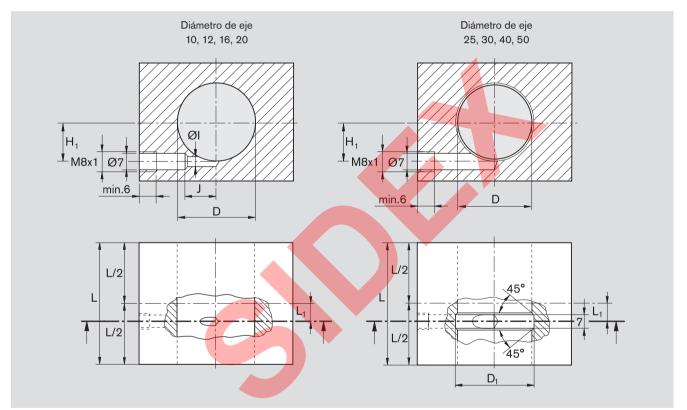
Primera lubricación

Los rodamientos lineales Super y po no se suministran con una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 22. Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.

Rodamientos lineales Super A y B

Carcasa propia del cliente

Recomendación de tolerancia para taladro de carcasa D:


H7 juego, para todas las aplicaciones normales

K7 poco juego, para aplicaciones con cargas alternativas

M7 ligera precarga, para aplicaciones con vibraciones o grandes aceleraciones

Observar los valores relativos al juego radial (eje/taladro) en las tablas correspondientes.

Ranura y taladro de lubricación para rodamientos lineales Super ♠, ᠍, cerrados – con retenes adicionales

Los canales de lubricación representados están dimensionados para la lubricación con grasa, véase capítulo "Lubricación" en la página 22.

Referencia		Eje Ø d		de lubricación ¹⁾ cm ³)	Medidas (mm)							
Rodamientos line	ales Super		Lubrica-	Lubricación								
A	B		(mm)	ción inicial	posterior	L ₁	H ₁	L(min)	D	D ₁	ØI	J
R0670 010 00	R0672 010 00	R1331 610 00	10	1,3	0,4	7,5	6,0	36	19	-	3	11,5
R0670 012 00	R0672 012 00	R1331 612 00	12	1,6	0,5	9,0	8,0	39	22	-	5	13,0
R0670 016 00	R0672 016 00	R1331 616 00	16	1,6	0,5	10,0	12,0	43	26	-	5	18,0
R0670 020 00	R0672 020 00	R1331 620 00	20	3,5	1,1	13,5	15,0	54	32	-	2	15,5
R0670 025 00	R0672 025 00	R1331 625 00	25	5,5	1,7	18,5	20,0	67	40	42	-	_
R0670 030 00	R0672 030 00	R1331 630 00	30	8,0	2,4	23,5	23,5	79	47	49	_	_
R0670 040 00	R0672 040 00	R1331 640 00	40	14,0	4,2	27,5	31,0	91	62	66	_	_
R0670 050 00	R0672 050 00	R1331 650 00	50	24,0	7,2	34,5	37,5	113	75	79	-	-

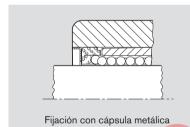
Volumen de relleno máx. para rodamientos lineales Rexroth en la carcasa.
 Las cantidades de relleno para la lubricación inicial y la lubricación posterior se refieren a los sets lineales R1035 / R1036.

Las carcasas propias del cliente con otras medidas de conexiones de lubricación alteran la cantidad de relleno para la lubricación inicial.

Fijación

Rodamientos lineales Super cerrados

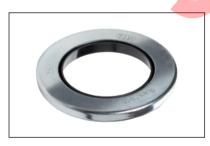
- Anillos de seguridad
- Cápsula metálica
- Retén con cápsula metálica
- Construcción especial


Fijación axial mediante tornillos

y arandelas de seguridad

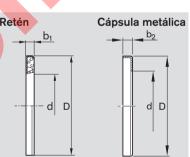
Eje	Anillos de segurida	ad DIN	471	Anillos de seguridad DIN 472				
Ø d (mm)	Referencia	Medic	das (mm)	Referencia	Medidas (mm)			
10	R3410 763 00		19 x 1,2	R3410 221 00	19 x 1			
12	R3410 714 00		22 x 1,2	R3410 209 00	22 x 1			
16	R3410 715 00		27 x 1,2 ¹⁾	R3410 210 00	26 x 1,2			
20	R3410 716 00		33 x 1,5 ¹⁾	R3410 211 00	32 x 1,2			
25	R3410 717 00		42 x 1,75	R3410 212 00	40 x 1,75			
30	R3410 718 00		48 x 1,75	R3410 213 00	47 x 1,75			
40	R3410 719 00		62 x 2	R3410 214 00	62 x 2			
50	R3410 720 00		75 x 2,5	R3410 215 00	75 x 2,5			

1) No según DIN 471.



Retenes cerrados

Construcción:


- Cápsula metálica, galvanizada
- Retén de elastómero

Cápsula metálica cerrada Material: acero, galvanizado

Retén	Cápsula metálica
- b ₁	<u>b2</u>
d D	- d D

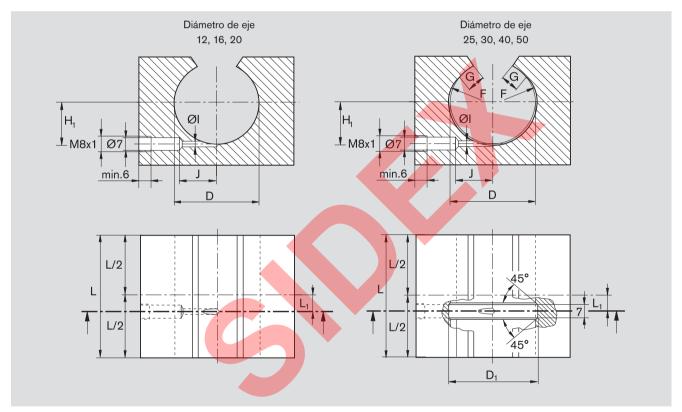
Eje	Medida	s (mm)		Retenes		Cápsulas metálicas			
Ød	D ²⁾	b ₁	b ₂	Referencia	Peso	Referencia	Peso		
(mm)		+0,3	+0,5		(g)		(g)		
10	19	3	3	R1331 610 00	1,1	R0901 184 00	0,64		
12	22	3	3	R1331 612 00	1,6	R0901 074 00	0,94		
16	26	3	3	R1331 616 00	2,0	R0901 075 00	1,20		
20	32	4	4	R1331 620 00	4,5	R0901 076 00	3,00		
25	40	4	4	R1331 625 00	6,6	R0901 077 00	4,20		
30	47	5	5	R1331 630 00	9,3	R0901 078 00	5,30		
40	62	5	5	R1331 640 00	17,0	R0901 079 00	9,20		
50	75	6	6	R1331 650 00	24,0	R0901 115 00	13,60		

²⁾ El diámetro exterior D está fabricado con un sobredimensionamiento de aprox. 0,1 mm. No se requiere una fijación adicional.

Rodamientos lineales Super D y E

Carcasa propia del cliente

Recomendación de tolerancia para taladro de carcasa D:


H7 juego, para todas las aplicaciones normales

K7 poco juego, para aplicaciones con cargas alternativas

M7 ligera precarga, para aplicaciones con vibraciones o grandes aceleraciones

Observar los valores relativos al juego radial (eje/taladro) en las tablas correspondientes.

Ranura y taladro de lubricación para rodamientos lineales Super ♠, ♠, abiertos – con retenes adicionales

Los canales de lubricación representados están dimensionados para la lubricación con grasa, véase capítulo "Lubricación" en la página 22. Asegurar los retenes axialmente.

Referencia			Eje		de lubricación ¹⁾ cm ³)	Medid	lidas (mm)							
Rodamientos li	neales Super	Retenes	Ød	Lubrica- ción inicial	Lubricación posterior									
A	B		(mm)			L ₁	H ₁	L (min)	D	D_1	F	G	ØI	J
R0671 012 00	R0673 012 00	R1331 712 50	12	1,3	0,4	9,0	8,0	39	22	_	-	-	2	13
R0671 016 00	R0673 016 00	R1331 716 50	16	1,3	0,4	10,0	12,0	43	26	_	-	-	2	14
R0671 020 00	R0673 020 00	R1331 720 50	20	3,0	0,9	13,5	15,0	54	32	-	-	-	2	16
R0671 025 00	R0673 025 00	R1331 725 50	25	5,0	1,5	18,5	20,0	67	40	42	R15	4,0	7	_
R0671 030 00	R0673 030 00	R1331 730 50	30	7,0	2,1	23,5	23,5	79	47	49	R18	4,5	7	-
R0671 040 00	R0673 040 00	R1331 740 50	40	13,0	3,9	27,5	31,0	91	62	66	R23	6,0	7	_
R0671 050 00	R0673 050 00	R1331 750 50	50	22,0	6,6	34,5	37,5	113	75	79	R28	7,0	4	30

Volumen de relleno máx. para rodamientos lineales Rexroth en la carcasa.
 Las cantidades de relleno para la lubricación inicial y la lubricación posterior se refieren a los sets lineales R1037 / R1038.
 Las carcasas propias del cliente con otras medidas de conexiones de lubricación alteran la cantidad de relleno para la primera lubricación Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

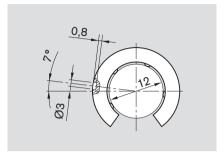
Fijación

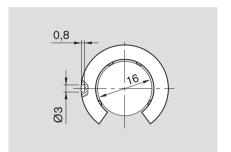
Rodamientos lineales Super abiertos

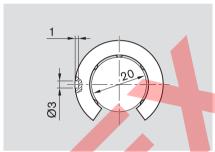
Sujeción axial y antitorsión mediante pasador cónico estriado.

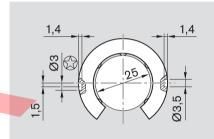
Instrucciones de montaje:

Los rodamientos lineales Super abiertos están dotados del taladro de fijación necesario, el cual, a partir del diámetro de eje 25, está marcado con una estrella . En el montaje, el pasador estriado se introduce hasta la profundidad indicada. A continuación, se estrecha el diámetro exterior del rodamiento lineal Super hasta que pueda pasar por el pasador. Al alinear el rodamiento lineal en la carcasa, el pasador estriado se enclava en el taladro de fijación.

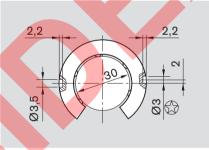

Taladro de alojamiento para pasador estriado en la carcasa:

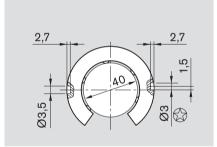

Diámetro del eje 12 a 40: Ø 3,0 H11 (pasador estriado ISO 8744-3x ...-ac)

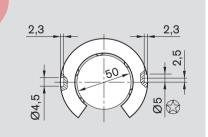

Diámetro de eje 50: Ø 5,0 H11 (pasador estriado ISO 8744-5x ...-ac)

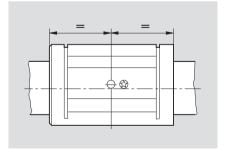

Los rodamientos lineales Super para el diámetro del eje 25 a 50 tienen 2 taladros de fijación.

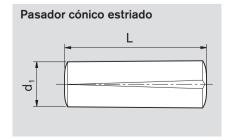
El 2. taladro de fijación (Ø 3,5 para los diámetros de eje 25, 30 y 40, y Ø 4,5 para diámetro de eje 50) se puede utilizar, alternativamente, para asegurar el rodamiento lineal.

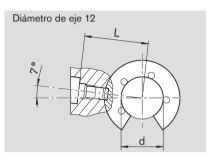


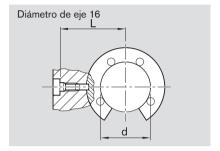


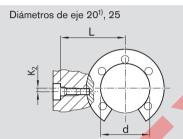


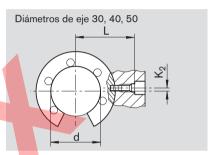




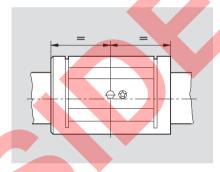

Eje Ø d		as (mm)	Peso	Taladro de alojamiento para pasador estriado	Referencias pasadores estriados			
(mm)	d ₁	L	(g)	(mm)				
12 40	3	8,2	0,5	Ø 3 H11	R3425 013 00			
	3	10,2	0,6		R3425 014 00			
	3	14,2	0,8		R3425 015 00			
50	5	20,4	3,1	Ø 5 H11	R3425 016 00			
	5	14,0	2,2		R3425 017 00			

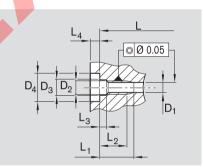

Rodamientos lineales Super D y B


Carcasa propia del cliente


Fijación

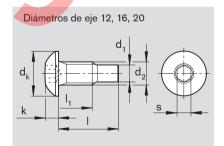
 Sujeción axial y antitorsión por tornillo de centrado

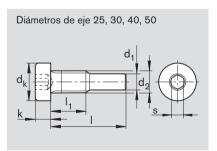




1) $K_2 = 0 \text{ mm}$

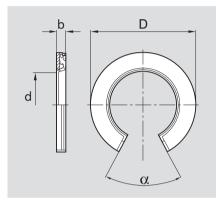
Instrucciones de montaje:


Los rodamientos lineales Super abiertos están dotados del taladro de fijación necesario, el cual, a partir del diámetro de eje 25, está marcado con una estrella "". En el montaje se alinea el taladro de fijación del rodamiento lineal con el taladro del tornillo de la carcasa. A continuación, se introduce el tornillo de centrado y se aprieta con el par de apriete indicado.

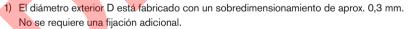


Tornillos de centraje

Los tornillos de centraje son autobloqueantes.


Medid	Medidas (mm)														Peso	Tornillo de centraje				
																Referencia	Par de			
Eje	L	K_2	L ₁	L_2	L ₃	L ₄	D ₁	D_2	D ₃	D_4	d_2	d_k	d_1	1	l ₁	k	s			apriete
Ød				mín.	+0,2	mín.	+0,1		H13	H13								(g)		(Nm)
12	18,80_0,10	-	7,2 _{max}	5,2	1,3	2,5	3,1	М4	4,5	8	M4	7,6	3	8,45	4,5	2,2	2,5	1,3	R3429 008 01	1,9
16	22,500,10	0	8,5+0,2	6,5	1,3	2,5	3,1	М4	4,5	8	M4	7,6	3	10,15	5,7	2,2	2,5	1,4	R3429 009 01	1,9
20	25,500,10	0	8,5+0,2	6,5	1,3	2,5	3,1	М4	4,5	8	M4	7,6	3	10,15	5,7	2,2	2,5	1,4	R3429 009 01	1,9
	33,05_0,10				2,0	3,2	3,1	M4	4,5	8	M4	7,0	3	14,10	6,5	2,8	2,5	1,8	R3427 009 09	1,9
	36,00-0,15				2,0	3,2	3,1	М4	4,5	8	M4	7,0	3	14,10	6,5	2,8	2,5	1,8	R3427 009 09	1,9
40	42,90-0,15	1,5	10,0+0,2	8,0	2,0	3,2	3,1	М4	4,5	8	M4	7,0	3	14,10	6,5	2,8	2,5	1,8	R3427 009 09	1,9
50	58,50_0,20	2,5	17,5 ^{+0,5}	13,5	3,7	6,0	5,1	M8	9,0	15	M8	13,0	5	22,80	12,5	5,0	5,0	11,1	R3427 005 09	16,0

Retenes abiertos


Construcción:

- Cápsula metálica, galvanizada
- Retén de elastómero

Medidas (r	Medidas (mm)			Peso (g)	Referencias de retenes
Eje Ø d	D ¹⁾	b	α2)		
		+0,1			
		-0,2			
12	22	3	66	2,0	R1331 712 50
16	26	3	68	2,6	R1331 716 50
20	32	4	55	4,7	R1331 720 50
25	40	4	57	7,7	R1331 725 50
30	47	5	57	13,5	R1331 730 50
40	62	5	56	25,0	R1331 740 50
50	75	6	54	42,0	R1331 750 50

Para aplicaciones con vibraciones o altas aceleraciones se recomienda una fijación adicional.

2) Medida mínima en estado montado; en un taladro con medida nominal "D".

Rodamientos lineales Super 6

Rodamiento lineal Super o compensación de errores de alineación

Rodamientos lineales Super, R0670 cerrados

Rodamientos lineales Super, R0671 abiertos

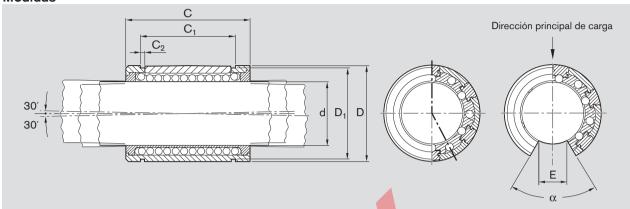
Construcción

- Jaula guía y casquillo exterior de PA o POM
- Insertos de acero templados con pistas de rodadura rectificadas
- Bolas de acero de rodamientos
- Compensación de errores de alineación hasta 30'
- Sin retén
- Con retenes integrados
- Sin lubricación inicial

Eje	Referencia		Peso
	sin retén	con dos retenes integrados	
Ød			
(mm)	KBA	KBADD	(kg)
10	R0670 010 00	R0670 210 40	0,017
12	R0670 012 00	R0670 212 40	0,023
16	R0670 016 00	R0670 216 40	0,028
20	R0670 020 00	R0670 220 40	0,061
25	R0670 025 00	R0670 225 40	0,122
30	R0670 030 00	R0670 230 40	0,185
40	R0670 040 00	R0670 240 40	0,360
50	R0670 050 00	R0670 250 40	0,580

Con un retén integrado: R0670 1.. 40.

Eje	Referencia			Peso
	sin retén	con dos retenes	con dos retenes	
		integrados	integrados y junta	
Ød			Iongitudinal	
(mm)	KBA-O	KBA-ODD	KBA-OVD	(kg)
12	R0671 012 00	R0671 212 40	R0671 212 45	0,018
16	R0671 016 00	R0671 216 40	R0671 216 45	0,022
20	R0671 020 00	R0671 220 40	R0671 220 45	0,051
25	R0671 025 00	R0671 225 40	R0671 225 45	0,102
30	R0671 030 00	R0671 230 40	R0671 230 45	0,155
40	R0671 040 00	R0671 240 40	R0671 240 45	0,300
50	R0671 050 00	R0671 250 40	R0671 250 45	0,480


Con un retén integrado: R0671 1.. 40.

Para los retenes adicionales, véase sección "Carcasas propias del cliente".

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Ejemplo de aclaración de abreviación

KB	Α	0	20	DD
Rodamiento lineal	Super 🗖	Abierto	Ø 20	2 juntas

cerrado

Medid	l as (mm	1)				Hileras	Juego radial	(µm)			Caps. de car	ga (N)			
Ød	D	С	C ₁	C ₂	D ₁	de bolas	eje/taladro					din. C		estát. C ₀	
		h13	H13				h6/H7		h6/K7	h6/M7	mín.	máx.	mín.	máx.	6
10	19	29	21,6	1,3	18,0	5	+9		+21	+15	600	820	330	480	
							+36		-6	-12					
12	22	32	22,6	1,3	21,0	5	+38		+23	+17	830	1140	420	620	
							+10		-5	-11					
16	26	36	24,6	1,3	24,9	5	+38		+23	+17	1020	1400	530	780	
							+10		-5	-11					
20	32	45	31,2	1,6	30,5	6	+43		+25	+18	2020	2470	1050	1340	
							+11	Æ,	-7	-14				l	
25	40	58	43,7	1,85	38,5	6	+43		+25	+18	3950	4820	2180	2790	
							+11		-7	-14					
30	47	68	51,7	1,85	44,5	6	+43		+25	+18	4800	5860	2790	3570	
							+11		-7	-14					
40	62	80	60,3	2,15	58,5	6	+50		+29	+20	8240	10070	4350	5570	
							+12		-9	-18				ı	
50	75	100	77,3	2,65	71,5	6	+50		+29	+20	12060	14730	6470	8280	
							+12		-9	-18					

abierto

Medid	as (mm	1)				Ángulo	Hileras	Juego radial (μ	Juego radial (μm) eje/taladro			2) (N)
Ød	D	С	C ₁	C ₂	E1)	α	de bolas					
		h13	H13			(°)		h6/H7	h6/K7	h6/M7	din. C	estát. C ₀
12	22	32	22,6	1,3	6,5	66	4	+38	+23	+17	1060	510
								+10	-5	-11		
16	26	36	24,6	1,3	9,0	68	4	+38	+23	+17	1500	830
								+10	-5	-11		
20	32	45	31,2	1,6	9,0	55	5	+43	+25	+18	2570	1180
								+11	-7	-14		
25	40	58	43,7	1,85	11,5	57	5	+43	+25	+18	5040	2470
								+11	-7	-14		
30	47	68	51,7	1,85	14,0	57	5	+43	+25	+18	5020	2880
								+11	-7	-14		
40	62	80	60,3	2,15	19,5	56	5	+50	+29	+20	8620	4480
								+12	-9	-18		
50	75	100	77,3	2,65	22,5	54	5	+50	+29	+20	12500	6620
								+12	-9	-18		

⚠ En caso de carga en dirección de apertura, observar los diagramas de Página 41.

- 1) Medida mínima referida a Ø d
- 2) Las capacidades de carga son válidas para la dirección principal de carga.

Rodamientos lineales Super 19

Rodamientos lineales Super sin compensación de errores de alineación

Rodamientos lineales Super, R0670 cerrados

Rodamientos lineales Super, R0671 abiertos

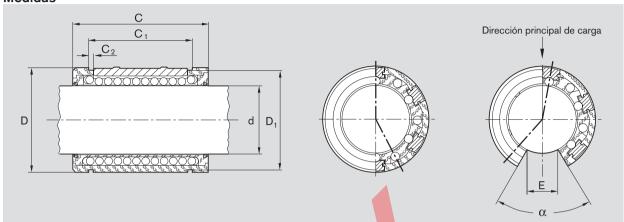
Construcción

- Jaula guía y casquillo exterior de PA o POM
- Insertos de acero templados con pistas de rodadura rectificadas
- Bolas de acero de rodamientos
- Sin retén
- Con retenes integrados
- Sin lubricación inicial

Eje	Referencia		Peso		
Ød	sin retén	con dos retenes integrados			
(mm)	KBB	KBBDD	(kg)		
10	R0672 010 00	R0672 210 40	0,017		
12	R0672 012 00	R0672 212 40	0,023		
16	R0672 016 00	R0672 216 40	0,028		
20	R0672 020 00	R0672 220 40	0,061		
25	R0672 025 00	R0672 225 40	0,122		
30	R0672 030 00	R0672 230 40	0,185		
40	R0672 040 00	R0672 240 40	0,360		
50	R0672 050 00	R0672 250 40	0,580		

Con un retén integrado: R0672 1.. 40.

Eje	Referencia	Referencia								
	sin retén	con dos retenes	con dos retenes							
		integrados	integrados y junta							
			Iongitudinal							
Ød										
(mm)	KBB-O	KBB-ODD	KBB-OVD	(kg)						
12	R0673 012 00	R0673 212 40	R0673 212 45	0,018						
16	R0673 016 00	R0673 216 40	R0673 216 45	0,022						
20	R0673 020 00	R0673 220 40	R0673 220 45	0,051						
25	R0673 025 00	R0673 225 40	R0673 225 45	0,102						
30	R0673 030 00	R0673 230 40	R0673 230 45	0,155						
40	R0673 040 00	R0673 240 40	R0673 240 45	0,300						
50	R0673 050 00	R0673 250 40	R0673 250 45	0,480						


Con un retén integrado: R0673 1.. 40.

Para los retenes adicionales, véase sección "Carcasas propias del cliente".

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Ejemplo de aclaración de abreviación

KB	В	0	20	DD
Rodamiento lineal	Super 🗉	Abierto	Ø 20	2 juntas

cerrado

Medid	las (mn	1)				Hileras	Juego radia	I (μm)			Caps. de ca	rga (N)		
Ød	D	С	C ₁	C ₂	D_1	de bolas	eje/taladro					din. C		estát. C ₀
		h13	H13				h6/H7	h	16/K7	h6/M7	mín.	máx.	mín.	máx.
10	19	29	21,6	1,3	18,0	5	+9		+21	+15	600	820	330	480
							+36		-6	-12				
12	22	32	22,6	1,3	21,0	5	+38		+23	+17	830	1140	420	620
							+10		-5	-11				
16	26	36	24,6	1,3	24,9	5	+38		+23	+17	1020	1400	530	780
							+10		-5	-11				
20	32	45	31,2	1,6	30,5	6	+43		+25	+18	2020	2470	1050	1340
							+11		-7	-14				
25	40	58	43,7	1,85	38,5	6	+43		+25	+18	3950	4820	2180	2790
							+11		-7	-14				
30	47	68	51,7	1,85	44,5	6	+43		+25	+18	4800	5860	2790	3570
							+11		-7	-14				
40	62	80	60,3	2,15	58,5	6	+50		+29	+20	8240	10070	4350	5570
							+12		-9	-18				
50	75	100	77,3	2,65	71,5	6	+50		+29	+20	12060	14730	6470	8280
							+12		-9	-18				

abierto

abicit	•											
Medid	as (mm	1)				Ángulo	Hileras	Juego radial (µ	m)		Caps. de carga	₁ 2) (N)
Ød	D	С	C ₁	C ₂	E1)	α	de bolas	eje/taladro				
		h13	H13			(°)		h6/H7	h6/K7	h6/M7	din. C	estát. C ₀
12	22	32	22,6	1,3	6,5	66	4	+38	+23	+17	1060	510
								+10	-5	-11		
16	26	36	24,6	1,3	9,0	68	4	+38	+23	+17	1500	830
								+10	-5	-11		
20	32	45	31,2	1,6	9,0	55	5	+43	+25	+18	2570	1180
								+11	-7	-14		
25	40	58	43,7	1,85	11,5	57	5	+43	+25	+18	5040	2770
								+11	-7	-14		
30	47	68	51,7	1,85	14,0	57	5	+43	+25	+18	5020	2880
								+11	-7	-14		
40	62	80	60,3	2,15	19,5	56	5	+50	+29	+20	8620	4480
								+12	-9	-18		
50	75	100	77,3	2,65	22,5	54	5	+50	+29	+20	12500	6620
								+12	-9	-18		

En caso de carga en dirección de apertura, observar los diagramas de Página 41.

- 1) Medida mínima referida a Ø d
- 2) Las capacidades de carga son válidas para la dirección principal de carga.

Sets lineales con rodamientos lineales Super

o

o

□

Visión general

	Sets lineales Rodamientos lineales Sur con compensación de err Rodamientos lineales Sur sin compensación de erro	ores de alineación per 🗉	Sets lineales Tandem Rodamientos lineales Super con compensación de errores de alineación
	Carcasa de aluminio	Carcasa de fundición/	Carcasa de aluminio
Cerrado	D100E	acero	D1005
Para guías precisas en montaje simple. Ejecución con camisa robusta.	R1035	R1065	R1085
Ajustable Para guías sin juego o precargadas. Un tornillo de ajuste permite el ajuste del juego radial. Estos sets lineales se suministran ajustados sin juego.	R1036	R1066	R1032
Abierto Para guías largas en las que deben apoyarse los ejes y se requiere una gran rigidez.	R1037	R1067	R1087
Abierto, ajustable	R1038	R1068	R1034
Para guías sin juego o precargadas. Un tornillo de ajuste permite el ajuste del juego radial. Estos sets lineales se suministran ajustados sin juego.			1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
Con abertura lateral	R1071		
Para la absorción de fuerzas procedentes de todas las direcciones sin disminución de la capacidad de carga.			
Con abertura lateral, ajustable	R1072		
Para guías sin juego o precargadas. Un tornillo de ajuste permite el ajuste del juego radial. Estos sets lineales se suministran ajustados sin juego.			
Brida Esta unidad completa las series de sets lineales y permite construcciones con el eje en posición vertical respecto a la superficie de soporte.		R1081	R1083

Ventajas/montaje

Ventaias

Gran capacidad de carga y rigidez

Independientemente de la dirección de carga, estos sets lineales ofrecen una rigidez muy alta, incluso al apurar las elevadas capacidades de carga.

Construcción en bloque compacta y montaje sencillo en la ejecución de aluminio

El rodamiento lineal Super utilizado está totalmente encastrado en la carcasa compacta y protegido de influencias externas. Las roscas también permiten enroscar desde arriba y desde abajo. Las carcasas se pueden alinear fácilmente gracias al borde de referencia, evitando una deformación de los rodamientos lineales. Los taladros de centrado facilitan la fijación adicional con pasadores.

Alta precisión y seguridad de funcionamiento

La construcción de la carcasa y el rodamiento lineal Super montado garantizan una alta precisión y seguridad de funcionamiento.

Guías sin juego

Con los rodamientos lineales ajustables se pueden realizar guiados sin juego.

Temperatura de servicio

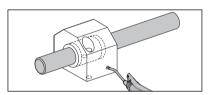
-10 °C hasta 80 °C.

Montaie

Juego radial

Los valores indicados en las tablas para el juego radial están calculados estadísticamente y corresponden a los valores que se pueden dar en la práctica. Los sets lineales ajustables se ajustan en fábrica con un eje h5 (límite inferior) sin juego en estado fijo.

Medida de altura

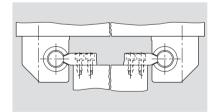

Los valores de tolerancia indicados en las tablas de los sets lineales para la medida "H" están calculados estadísticamente y corresponden a los valores que pueden darse en la práctica.

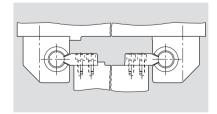
Tornillos

Para la fijación de los sets líneales recomendamos tornillos según ISO 4762-8.8.

Lubricación

Lubricación en rodamientos relubricables solo con eje introducido y hasta que salga lubricante.


Instrucciones de montaje para sets lineales con abertura lateral


Sin bordes de referencia

- Alinear el primer eje con el soporte de ejes de manera que quede recto y atornillarlo.
- Alinear el segundo eje en paralelo y atornillarlo.
- Colocar los sets lineales en el eje y atornillarlos con la mesa de la máquina.

Con bordes de referencia

- Presionar el primer eje con soporte de eje en el borde de referencia y atornillarlo.
- Colocar el segundo eje de forma paralela y atornillar el soporte de eje.
- Colocar los sets lineales en los ejes. Y a continuación:
 - a) En cada borde de referencia en la estructura de la máquina y la mesa de la máquina: presionar los sets lineales del primer eje en el borde de referencia de la mesa de la máquina y atornillarlos. Atornillar los sets lineales del segundo eje con la mesa de la máquina.

b) En cada borde de referencia de la estructura de la máquina: atornillar los sets lineales con la mesa de la máquina.

Sets lineales con rodamientos lineales Super

o

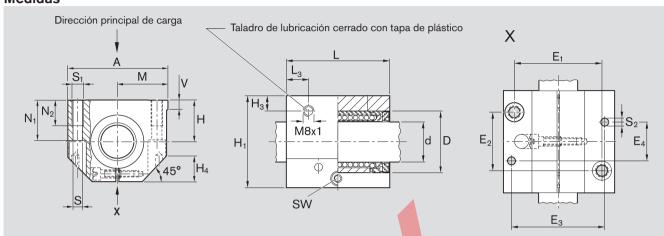
Sets lineales, R1035 cerrados

Sets lineales, R1036 ajustables

Construcción

- Carcasa de precisión en construcción ligera (aluminio)
- Rodamientos lineales Super con o sin compensación de errores de alineación
- Retenes adicionales
- Relubricables

Eje	Referencia		Peso
	con rodamiento lineal Super 🖸	con rodamiento lineal Super 🖪	
	Relubricables	Relubricables	
Ød	con dos retenes	con dos retenes	
(mm)	LSA-ADD	LSA-BDD	(kg)
10	R1035 610 20	R1035 810 20	0,10
12	R1035 612 20	R1035 812 20	0,13
16	R1035 616 20	R1035 816 20	0,20
20	R1035 620 20	R1035 820 20	0,34
25	R1035 625 20	R1035 825 20	0,65
30	R1035 630 20	R1035 830 20	0,97
40	R1035 640 20	R1035 840 20	1,80
50	R1035 650 20	R1035 850 20	3,00



Eje	Referencia		Peso
	con rodamiento lineal Super 🖸	con rodamiento lineal Super 🗉	
	Relubricables	Relubricables	
Ød	con dos retenes	con dos retenes	
(mm)	LSAE-ADD	LSAE-BDD	(kg)
10	R1036 610 20	R1036 810 20	0,10
12	R1036 612 20	R1036 812 20	0,13
16	R1036 616 20	R1036 816 20	0,20
20	R1036 620 20	R1036 820 20	0,34
25	R1036 625 20	R1036 825 20	0,65
30	R1036 630 20	R1036 830 20	0,97
40	R1036 640 20	R1036 840 20	1,80
50	R1036 650 20	R1036 850 20	3,00

Ejemplo de aclaración de abreviación

LS	Α	E	В	20	DD
Set lineal	Aluminio	Ajustable	Super 🖪	Ø 20	2 juntas

Encontrará más información acerca de la abreviación en Página 39.

Medic	las (m	m)																		
Ød	D	H ¹⁾	H ₁	M ¹⁾	Α	L	E ₁	E ₂	E ₃	E ₄	S ²⁾	S ₁	S ₂ ³⁾	N ₁	N_2	H ₃	L ₃	٧	SW	H ₄
		+0,008		±0,01																
		-0,016																		
10	19	16	31,5	20,0	40	36	29 ^{±0,15}	20 ^{±0,15}	31	29	4,3	M5	4	15,0	11	10,0	10,5	5,0	2,5	10
12	22	18	35,0	21,5	43	39	32 ^{±0,15}	23 ^{±0,15}	34	32	4,3	M5	4	16,5	11	10,0	10,5	5,0	2,5	10
16	26	22	42,0	26,5	53	43	40 ^{±0,15}		42	35	5,3	M6	4	21,0	13	10,0	11,5	5,0	3,0	13
20	32	25	50,0	30,0	60	54	45 ^{±0,15}	32 ^{±0,15}	50	45	6,6	M8	5	24,0	18	10,0	13,5	5,0	4,0	16
25	40	30	60,0	39,0	78	67	60 ^{±0,15}	40 ^{±0,15}	64	20	8,4	M10	6	29,0	22	10,0	15,0	6,5	5,0	20
30	47	35	70,0	43,5	87	79	68 ^{±0,15}	45 ^{±0,15}	72	30	8,4	M10	6	34,0	22	11,5	16,0	8,0	5,0	22
40	62	45	90,0	54,0	108	91	86 ^{±0,15}	58 ^{±0,15}	90	35	10,5	M12	8	44,0	26	14,0	18,0	10,0	6,0	28
50	75	50	105,0	66,0	132	113	108 ^{±0,20}	50 ^{±0,20}	108	42	13,5	M16	10	49,0	34	12,5	22,0	12,0	80	37

Ød	Juego radia	լ (μm)	Caps. de carga ⁴⁾ (N)	
	R1035	R1036	din. C	estát. C ₀
(mm)	Eje h6			
10	+36		730	380
	+9	opg		
12	+38	nste	1020	490
	+10) aji		
16	+38	(límite inferior) ajustado	1250	620
	+10	nfe		
20	+43	<u>te</u>	2470	1340
	+11	<u><u>=</u></u>		
25	+43		4820	2790
	+11	je k		
30	+43	a con un eje h	5860	3570
	+11	on c		
40	+50	fábrica con un eje h5 juego en estado fijo	10070	5570
	+12	go		
50	+50	de fábrica sin juego	14730	8280
	+12	gi de		

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

- En estado fijo (con los tornillos apretados) referido a Ø d.
- 2) Tornillos de fijación ISO 4762-8.8
- 3) Centrados para taladros de pasador.
- 4) Las capacidades de carga son válidas para la dirección principal de carga. Si la dirección de carga no corresponde a la dirección principal de carga, los valores de capacidad de carga se deberán multiplicar por los siguientes factores:

Ø d 10 hasta 16: f = 0.82, $f_0 = 0.86$

Ø d 20 hasta 50: f = 0.82, $f_0 = 0.78$

Sets lineales con rodamientos lineales Super

o

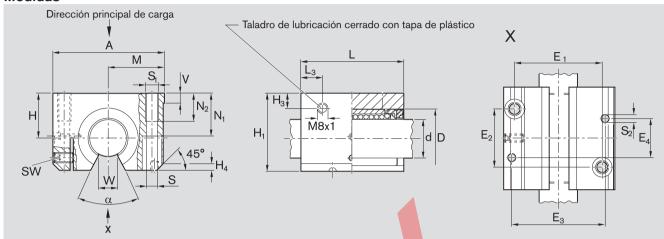
Sets lineales, R1037 abiertos

Sets lineales, R1038 abiertos, ajustables

Construcción

- Carcasa de precisión en construcción ligera (aluminio)
- Fijación con pasador cónico estriado
- Rodamientos lineales Super con o sin compensación de errores de alineación
- Retenes adicionales
- Relubricables

Eje	Referencia		Peso
	con rodamiento lineal Super 🖸	con rodamiento lineal Super 🗈	
	Relubricables	Relub <mark>ricab</mark> les	
Ød	con dos retenes	con d <mark>os re</mark> tenes	
(mm)	LSAO-ADD	LSAO-BDD	(kg)
12	R1037 612 20	R1037 812 20	0,11
16	R1037 616 20	R1037 816 20	0,17
20	R1037 620 20	R1037 820 20	0,30
25	R1037 625 20	R1037 825 20	0,57
30	R1037 630 20	R1037 830 20	0,86
40	R1037 640 20	R1037 840 20	1,60
50	R1037 650 20	R1037 850 20	2,60



Eje	Referencia	Peso	
	con rodamiento lineal Super 🖸	con rodamiento lineal Super 🗉	
	Relubricables	Relubricables	
Ød	con dos retenes	con dos retenes	
(mm)	LSAOE-ADD	LSAOE-BDD	(kg)
12	R1038 612 20	R1038 812 20	0,11
16	R1038 616 20	R1038 816 20	0,17
20	R1038 620 20	R1038 820 20	0,30
25	R1038 625 20	R1038 825 20	0,57
30	R1038 630 20	R1038 830 20	0,86
40	R1038 640 20	R1038 840 20	1,60
50	R1038 650 20	R1038 850 20	2,60

Ejemplo de aclaración de abreviación

Set lineal Aluminio Abierto	Ajustable Super	Ø 20	2 juntas

Encontrará más información acerca de la abreviación en Página 39.

Medi	das ((mm)								. 4											
Ød	D	H ¹⁾	H ₁	M ¹⁾	Α	L	E ₁	E_2	E ₃	E ₄	S ²⁾	Sı	S ₂ ³⁾	N ₁	N ₂	H ₃	L ₃	٧	SW	W ⁴⁾	H ₄
		+0,008		±0,01																	
		-0,016																			
12	22	18	28	21,5	43	39	32 ^{±0,15}	23 ^{±0,15}	34	32	4,3	M5	4	16,5	11	10,0	10,5	5,0	2,5	6,5	1,5
16	26	22	35	26,5	53	43	40 ^{±0,15}	26 ^{±0,15}	42	35	5,3	M6	4	21,0	13	10,0	11,5	5,0	2,5	9,0	2,5
20	32	25	42	30,0	60	54	45 ^{±0,15}	32 ^{±0,15}	50	45	6,6	M8	5	24,0	18	10,0	13,5	5,0	2,5	9,0	3,5
25	40	30	51	39,0	78	67	60 ^{±0,15}	40 ^{±0,15}	64	20	8,4	M10	6	29,0	22	10,0	15,0	6,5	3,0	11,5	4,0
30	47	35	60	43,5	87	79	68 ^{±0,15}	45 ^{±0,15}	72	30	8,4	M10	6	34,0	22	11,5	16,0	8,0	3,0	14,0	6,0
40	62	45	77	54,0	108	91	86 ^{±0,15}	58 ^{±0,15}	90	35	10,5	M12	8	44,0	26	14,0	18,0	10,0	4,0	19,5	6,0
50	75	50	88	66,0	132	113	108 ^{±0,20}	50 ^{±0,20}	108	42	13,5	M16	10	49,0	34	12,5	22,0	12,0	5,0	22,5	6,0

Ød	l Ángu-	Juego radial	5) (μm)	Caps. de carga ⁶⁾ (N)	
	lo	R1037	R1038	din. C	estát. C ₀
	α	Eje h6			
(mm	(°)				
12	66	+28		1060	510
		-1			
16	68	+28	ior	1500	830
		-1	Jer		
20	55	+31	fi e i.	2570	1180
		-2	im de		
25	5 57	+31	5 (I	5040	2470
		-2	le h		
30	57	+31	n e.	5020	2880
		-2	o n u		
40	56	+35	os ini	8620	4480
		-3	rica Yo s		
50	54	+35	de fábrica con un eje h5 (límite inferior) ajustado sin juego en estado fijo	12500	6620
		-3	de fábrica con un eje h5 (limite i ajustado sin juego en estado fijo		

- 1) En estado fijo (con los tornillos apretados) referido a Ø d.
- 2) Tornillos de fijación ISO 4762-8.8
- 3) Centrados para taladros de pasador.
- 4) Medida mínima referida a Ø d.
- 5) En estado fijo (con los tornillos apretados).
- 6) Las capacidades de carga son válidas para la dirección principal de carga.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

En caso de carga en dirección de apertura, observar los diagramas de Página 41.

Sets lineales con rodamientos lineales Super

o

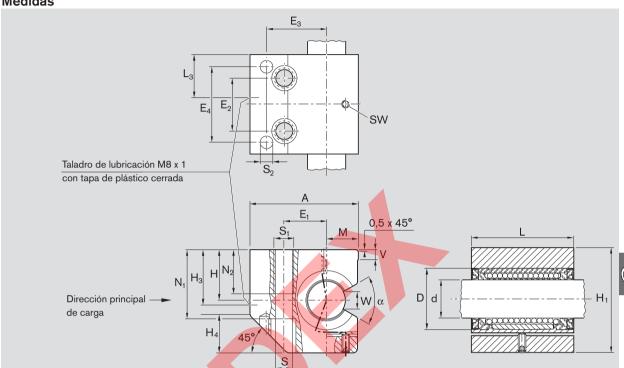
Sets lineales, R1071, con abertura lateral

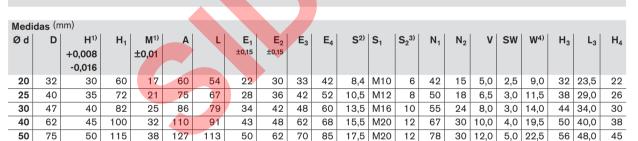
Sets lineales, R1072, con abertura lateral

Construcción

- Carcasa de precisión en construcción ligera (aluminio)
- Fijación con pasador cónico estriado
- Rodamientos lineales Super con o sin compensación de errores de alineación
- Retenes adicionales
- Relubricables

Si en los rodamientos lineales abiertos la carga actúa en sentido contrario a la dirección de abertura, generalmente, hay que contar con una considerable disminución de la capacidad de carga. Para evitarlo y permitir un correcto montaje de los rodamientos lineales abiertos se han desarrollado los sets lineales con abertura lateral en construcción ligera.


Eje	Referencia		Peso
	con rodamiento lineal Super 🖸	con r <mark>oda</mark> miento lineal Super 🗉	
	Relubricables	Relubricables	
Ød	con dos retenes	con dos retenes	
(mm)	LSAS-ADD	LSAS-BDD	(kg)
20	R1071 620 20	R1071 820 20	0,42
25	R1071 625 20	R1071 825 20	0,80
30	R1071 630 20	R1071 830 20	1,20
40	R1071 640 20	R1071 840 20	2,00
50	R1071 650 20	R1071 850 20	3,20



Eje	Referencia	Referencia						
	con rodamiento lineal Super 🖸	con rodamiento lineal Super						
	Relubricables	Relubricables						
Ød	con dos retenes	con dos retenes						
(mm)	LSASE-ADD	LSASE-BDD	(kg)					
20	R1072 620 20	R1072 820 20	0,42					
25	R1072 625 20	R1072 825 20	0,80					
30	R1072 630 20	R1072 830 20	1,20					
40	R1072 640 20	R1072 840 20	2,00					
50	R1072 650 20	R1072 850 20	3,20					

Ejemplo de aclaración de abreviación

LS	Α	S	E	В	20	DD
Set lineal	Aluminio	Con abertura lateral	Ajustable	Super ■	Ø 20	2 juntas

Eje	Ángu-	Juego radial ⁵	5) (μm)	Caps. de carga ⁶⁾ (N)				
Ød	lo α	R1071 Eje h6	R1072	din. C	estát. C ₀			
(mm)	(°)							
20	55	+31 -2	(límite jo en	2570	1180			
25	57	+31 -2	Ph Sec	5040	2470			
30	57	+31 -2	con un eje l ustado sin ju	5020	2880			
40	56	+35 -3	Sa aju ijo	8620	4480			
50	54	+35 -3	de fábrii inferior) estado t	12500	6620			

- 1) En estado fijo (con los tornillos apretados) referido a Ø d.
- 2) Tornillos de fijación ISO 4762-8.8
- 3) Centrados para taladros de pasador.
- 4) Medida mínima referida a Ø d.
- 5) En estado fijo (con los tornillos apreta-
- 6) Las capacidades de carga son válidas para la dirección principal de carga.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Observe las instrucciones de montaje para sets lineales con abertura lateral.

A En caso de carga en dirección de apertura, observar los diagramas de Página 41.

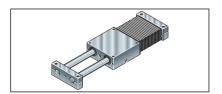
Sets lineales con rodamientos lineales Super
Tandem

Sets lineales, R1085 cerrados

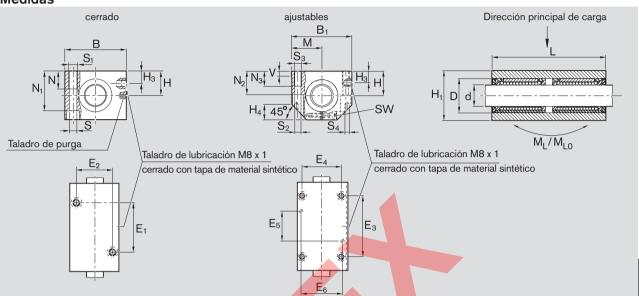
Sets lineales, R1032 ajustables

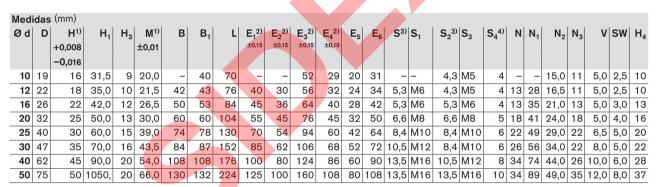
Construcción

- Carcasa de precisión Tandem en construcción ligera (aluminio)
- Dos rodamientos lineales Super
- Retenes adicionales
- Borde de referencia (en set lineal Tandem, ajustable)
- Relubricables



Eje	Referencia	Peso
Ø d (mm)	LSAT-ADD	(kg)
12	R1085 612 20	0,27
16	R1085 616 20	0,41
20	R1085 620 20	0,72
25	R1085 625 20	1,35
30	R1085 630 20	2,01
40	R1085 640 20	3,67
50	R1085 650 20	6,30


Eje	Referencia	Peso
Ød	LSATE-ADD	
(mm)		(kg)
10	R1032 610 20	0,20
12	R1032 612 20	0,27
16	R1032 616 20	0,41
20	R1032 620 20	0,72
25	R1032 625 20	1,35
30	R1032 630 20	2,01
40	R1032 640 20	3,67
50	R1032 650 20	6,30


También disponible como carro lineal. Véase catálogo "Carro lineal", R310 3001.

Ejemplo de aclaración de abreviación

LS	Α	Т	E	Α	20	DD
Set lineal	Aluminio	Tándem	Ajustable	Super 🖸	Ø 20	2 juntas

Ød	Juego radi	al (µm)	Caps. de carga	₂ 5) (N)	Momentos de	vuelco (Nm)		
	R1085	R1032	din. C	estát. Co	din. M _I	estát. M _{L0}		
(mm)	Eje h6				_	20		
10	-		1180	760	17	12		
	-	opa						
12	+38	fábrica con un eje h5 (límite inferior) ajustado juego en estado fijo	1660	980	26	16		
	+10) aji						
16	+38	rior	2430	1660	18	13		
	+10	nfe						
20	+43	ite	4010	2680	84	54		
	+11	<u>li</u>						
25	+43	ا کار 0	8180	4940	141	86		
	+11	aje l o fij						
30	+43	ı con un eje h! en estado fijo	9520	7140	289	206		
	+11	on u						
40	+50	a cc en	16360	11140	576	374		
	+12	orice ego						
50	+50	de fábrica sin juego	23930	16560	0 1097			
	+12	de sin						

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

- En estado fijo (con los tornillos apretados) referido a Ø d.
- 2) Diámetro de eje 50: Tolerancia ± 0,2
- 3) Tornillos de fijación ISO 4762-8.8
- 4) Centrados para taladros de pasador.
- Capacidad de carga, cuando ambos rodamientos lineales se cargan de la misma forman.

Las capacidades de carga son válidas para la dirección principal de carga.
Si la dirección de carga no corresponde a la dirección principal de carga, los valores de capacidad de carga se deberán multiplicar por los siguientes factores:

Ø d 10 hasta 16: f = 0.82, $f_0 = 0.86$

Ø d 20 hasta 50: f = 0.82, $f_0 = 0.78$

Indicaciones de lubricación para sets lineales R1085:

Estando el eje introducido, lubricar hasta que salga lubricante.

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

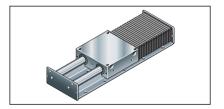
Sets lineales con rodamientos lineales Super 🖪 Tandem

Sets lineales, R1087 abiertos

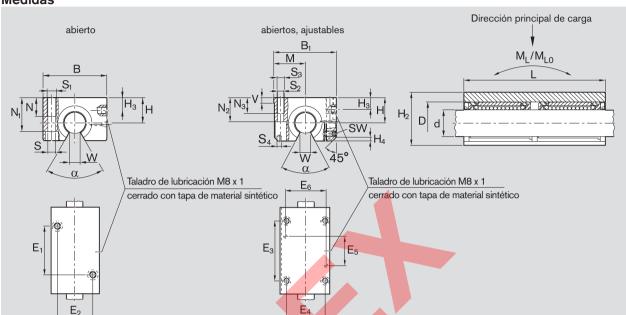
Sets lineales, R1034 abiertos, ajustables

Construcción

- Carcasa de precisión Tandem en construcción ligera (aluminio)
- Dos rodamientos lineales Super 🖪
- Dos retenes adicionales
- Borde de referencia (en set lineal Tandem abierto, ajustable)
- Relubricables



Eje Ø d	Referencia LSATO-ADD	Peso
(mm)		(kg)
12	R1087 612 20	0,22
16	R1087 616 20	0,34
20	R1087 620 20	0,62
25	R1087 625 20	1,17
30	R1087 630 20	1,68
40	R1087 640 20	3,15
50	R1087 650 20	5,50


Eje		Referencia	Peso
	Ød	LSATOE-A-20-DD	
	(mm)		(kg)
	12	R1034 612 20	0,22
	16	R1034 616 20	0,34
	20	R1034 620 20	0,62
	25	R1034 625 20	1,17
	30	R1034 630 20	1,68
	40	R1034 640 20	3,15
	50	R1034 650 20	5,50

También disponible como carro lineal. Véase catálogo "Carro lineal" R310DE 3001.

Ejemplo de aclaración de abreviación

LS	Α	TO	E	Α	20	DD
Set lineal	Aluminio	Tandem, abierto	Ajustable	Super 🔼	Ø 20	2 juntas

Medio Ø d		(mm) H ²⁾ +0,008 -0,016		H ₃	M ²⁾ ±0,01	В	B ₁	L	E ₁ ³⁾ ±0,15	E ₂ ³⁾ ±0,15	·		\ `	E ₆	S ⁴⁾	S ₁	S ₂ ⁵⁾	S ₃	S ₄ ⁶⁾	N	N ₁	N ₂	N ₃	V	SW	W ⁷⁾	H ₄
12	22	18	301)	10	21,5	42	43	76	40	30	56	32	24	34	5,3	M6	4,3	M5	4	13	25	16,5	11	5,0	2,5	6,5	1,5
16	26	22	35	12	26,5	50	53	84	45	36	64	40	28	42	5,3	M6	5,3	M6	4	13	29,5	21,0	13	5,0	2,5	9,0	2,5
20	32	25	42	13	30,0	60	60	104	55	45	76	45	32	50	6,6	M8	6,6	M8	5	18	35,5	24,0	18	5,0	2,5	9,0	3,5
25	40	30	51	15	39,0	74	78	130	70	54	94	60	42	64	8,4	M10	8,4	M10	6	22	43,0	29,0	22	6,5	3,0	11,5	4,0
30	47	35	60	16	43,5	84	87	152	85	62	106	68	52	72	10,5	M12	8,4	M10	6	26	50,5	34,0	22	8,0	3,0	14,0	6,0
40	62	45	77	20	54,0	108	108	176	100	80	124	86	60	90	13,5	M16	10,5	M12	8	34	66,0	44,0	26	10	4,0	19,5	6,0
50	75	50	88	10	66,0	130	132	224	125	100	160	108	80	108	13,5	M16	13,5	M16	10	34	77,0	49,0	35	12	5,0	22,5	6,0

Ød	Ángulo	Juego rad	ial ⁸⁾ (μm)	Caps. de car	rga ^{9) (N)}	Momento de	vuelco (Nm)
	α	R1087	R1034	din. M _L	estát. M _{L0}		
(mm)	(°)	Eje h6					
12	66	+28		1720	1020	11	7
		-1	ado				
16	68	+28	just	2430	1660	18	13
		-1	or) a				
20	55	+31	feric	4170	2360	60	47
		-2	⊒. e				
25	57	+31	<u>li</u> mit	8180	4940	141	86
		-2	h5 (
30	57	+31	eje o fij	8150	5760	163	116
		-2	un stad				
40	56	+35	t con un eje h	14000	8960	328	212
		-3					
50	54	+35	de fábrica sin juego	20300	13240	630	415
		-3	de sin				

- 1) En los sets lineales abiertos ajustables es H₂ 28 mm.
- 2) En estado fijo (con los tornillos apretados) referido a Ø d.
- 3) Diámetro de eje 50: Tolerancia ± 0,2
- 4) Tornillos de fijación DIN 6912-8.8.
- 5) Tornillos de fijación ISO 4762-8.8
- 6) Centrados para taladros de pasador.
- 7) Medida mínima referida a Ø d.
- 8) En estado fijo (con los tornillos apretados).
- 9) Capacidad de carga, cuando ambos rodamientos lineales se cargan de la misma forman. Las capacidades de carga son válidas para la dirección principal de carga.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

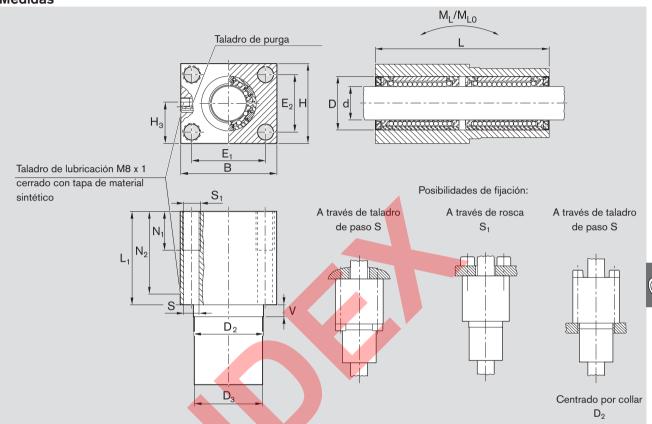
⚠ En caso de carga en dirección de apertura, observar los diagramas de Página 41.

Sets lineales con rodamientos lineales Super 🖸 Tandem

Sets lineales, R1083 brida

Construcción

- Carcasa de precisión con brida en construcción ligera (aluminio)
- Dos rodamientos lineales Super 🖪
- Dos retenes adicionales
- Collar de centrado
- Taladros roscados para el atornillado desde la base
- Relubricables
- Juego radial no ajustable



Eje	Referencia	Peso
Ø d (mm)	LSAFT-ADD	(kg)
12	R1083 612 20	0,20
16	R1083 616 20	0,32
20	R1083 620 20	0,55
25	R1083 625 20	1,00
30	R1083 630 20	1,50

Ejemplo de aclaración de abreviación

LS	A	FT	Α	20	DD
Set lineal	Aluminio	Brida, Tandem	Super 🗖	Ø 20	2 juntas

Encontrará más información acerca de la abreviación en Página 39.

Medid	as (mm)														
Ød	D	D ₂ ¹⁾	D_3	Н	H ₃	В	L	L ₁	E ₁	E ₂	S2)	S ₁	N ₁	N ₂	V
			-0,1						±0,15	±0,15					
		g7	-0,3												
12	22	30	30	34	19	42	76	46	32	24	5,3	M6	13	36	10
16	26	35	35	40	22	50	84	50	38	28	6,6	M8	18	40	10
20	32	42	42	50	27	60	104	60	45	35	8,4	M10	22	50	10
25	40	52	52	60	32	74	130	73	56	42	10,5	M12	26	63	10
30	47	61	61	70	37	84	152	82	64	50	13,5	M16	34	74	10

Eje	Juego radial (µm)	Caps. de carga	a ³⁾ (N)	Momentos de	vuelco (Nm)
Ø d (mm)	Eje h6	din. C	estát. C ₀	din. M _L	estát. M _{L0}
12	+38	1350	840	26	16
	+10				
16	+38	1660	1060	35	22
	+10				
20	+43	3280	2100	84	54
	+11				
25	+43	6420	4360	205	140
	+11				
30	+43	7800	5580	289	206
	+11				

- Recomendación de montaje: Taladro de alojamiento D₂^{H7}.
- 2) Tornillos de fijación ISO 4762-8.8
- Capacidad de carga, cuando ambos rodamientos lineales se cargan de la misma forman.

Indicaciones de lubricación:

Estando el eje introducido, lubricar hasta que salga lubricante.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Sets lineales con rodamientos lineales Super

o

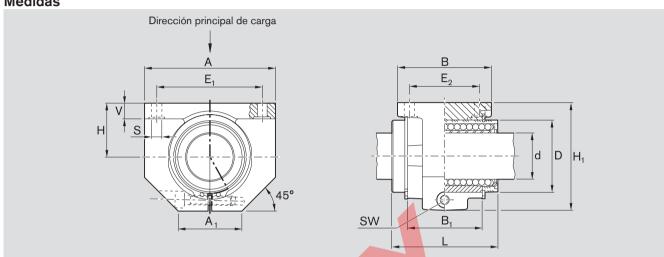
Sets lineales, R1065 cerrados

Sets lineales, R1066 ajustables

Construcción

- Carcasa de precisión (fundición gris/acero)
- Rodamientos lineales Super con o sin compensación de errores de alineación
- Retenes integrados

Eje	Referencia		Peso
	con rodamiento lineal	con rodamiento lineal	
	Super con retenes	Super 🗈 con retenes	
Ød	integrados	integrados	
(mm)	LSG-ADD	LSG-BDD	(kg)
12	R1065 612 40	R1065 812 40	0,15
16	R1065 616 40	R1065 816 40	0,24
20	R1065 620 40	R1065 <mark>820</mark> 40	0,42
25	R1065 625 40	R1065 825 40	0,83
30	R1065 630 40	R1065 830 40	1,22
40	R1065 640 40	R1065 840 40	2,29
50	R1065 650 40	R1065 850 40	3,23



Eje	Referencia		Peso
	con rodamiento lineal	con rodamiento lineal	
	Super con retenes	Super con retenes	
Ød	integrados	integrados	
(mm)	LSGE-ADD	LSGE-BDD	(kg)
12	R1066 612 40	R1066 812 40	0,15
16	R1066 616 40	R1066 816 40	0,24
20	R1066 620 40	R1066 820 40	0,41
25	R1066 625 40	R1066 825 40	0,79
30	R1066 630 40	R1066 830 40	1,19
40	R1066 640 40	R1066 840 40	2,26
50	R1066 650 40	R1066 850 40	3,15

Ejemplo de aclaración de abreviación

LS	G	E	Α	20	DD
Set lineal	Fundición	Ajustable	Super 🗖	Ø 20	2 juntas

Encontrará más información acerca de la abreviación en Página 39.

Medidas	s (mm)												
Ød	D	Н	H ₁ ¹⁾	L	A ¹⁾	A ₁ 1)	B1)	B ₁	E ₁	E_2	S	V 1)	SW
12	22	18	35	32	42	21	32	20	32 ^{±0,15}	23 ^{±0,15}	4,5	5,5	2,5
16	26	22	42	36	50	26	35	22	40 ^{±0,15}	26 ^{±0,15}	4,5	6,5	3,0
20	32	25	50	45	60	28	42	28	45 ^{±0,15}	32 ^{±0,15}	4,5	8,0	3,0
25	40	30	60	58	74	38	54	40	60 ^{±0,15}	40 ^{±0,15}	5,5	9,0	5,0
30	47	35	70	68	84	41	60	48	68 ^{±0,20}	45 ^{±0,20}	6,6	10,0	5,0
40	62	45	90	80	108	51	78	56	86 ^{±0,20}	58 ^{±0,20}	9,0	12,0	6,0
50	75	50	105	100	130	57	70	72	108 ^{±0,20}	50 ^{±0,20}	9,0	14,0	8,0

Eje	Juego radi	ial (μι	n)	Tolerancia para H ²⁾	Caps. de carga ³⁾ (N)
Ø d (mm)	R1065 Eje h6	R10	66	(μm)	din. C	estát. C ₀
12	+38 +10			+8 -16	1020	490
16	+38 +10	de fábrica con un eje h5 (límite inferior)		+8 -16	1500	830
20	+43 +11	límite i	estado fijo	+8 -16	2470	1340
25	+43 +11	je h5 (en esta	+8 -16	5040	2470
30	+43 +11	o un u	sin juego	+8 -16	5860	3570
40	+50 +12	rica co		+8 -16	10070	5570
50	+50 +12	de fáb	ajustado	+13 -21	14730	8280

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

- 1) Tolerancia ISO 8062-3 DCTG 9.
- 2) En estado fijo (con los tornillos apretados) referido a ${\cal O}$ d.
- 3) Las capacidades de carga son válidas para la dirección principal de carga. Si la dirección de carga no corresponde a la dirección principal de carga, los valores de capacidad de carga se deberán multiplicar por los siguientes factores:

Ø d 12 y 16: f = 0.82, $f_0 = 0.86$

Ø d 20 hasta 50: f = 0.82, $f_0 = 0.78$

Sets lineales con rodamientos lineales Super

o

Sets lineales, R1067 abiertos

Sets lineales, R1068 abiertos, ajustables

Construcción

- Carcasa de precisión (fundición de grafito esferoidal/acero)
- Fijación con tornillo de centrado
- Rodamientos lineales Super con o sin compensación de errores de alineación
- Retenes integrados

Eje	Referencia	Peso	
	con rodamiento lineal	con rodamiento lineal	
	Super con retenes	Super con retenes	
Ød	integrados	integrados	
(mm)	LSGO-ADD	LSGO-BDD	(kg)
12	R1067 612 40	R1067 812 40	0,13
16	R1067 616 40	R1067 816 40	0,20
20	R1067 620 40	R1067 820 40	0,36
25	R1067 625 40	R1067 825 40	0,70
30	R1067 630 40	R1067 830 40	1,05
40	R1067 640 40	R1067 840 40	2,05
50	R1067 650 40	R1067 850 40	2,77

Eje	Referencia		Peso
	con rodamiento lineal	con rodamiento lineal	
	Super con retenes	Super con retenes	
Ød	integrados	integrados	
(mm)	LSGOE-ADD	LSGOE-BDD	(kg)
12	R1068 612 40	R1068 812 40	0,12
16	R1068 616 40	R1068 816 40	0,20
20	R1068 620 40	R1068 820 40	0,36
25	R1068 625 40	R1068 825 40	0,69
30	R1068 630 40	R1068 830 40	1,02
40	R1068 640 40	R1068 840 40	2,02
50	R1068 650 40	R1068 850 40	2,71

Ejemplo de aclaración de abreviación

LS	G	0	Α	20	DD
Set lineal	Fundición	Abierto	Super 🗖	Ø 20	2 juntas

Encontrará más información acerca de la abreviación en Página 39.

Medidas	(mm)												
Ød	D	н	H ₂ ¹⁾	L	A ¹⁾	B ¹⁾	B ₁	E ₁	E ₂	S	V ¹⁾	W ²⁾	SW
12	22	18	28	32	42	32	20	32 ^{±0,15}	23 ^{±0,15}	4,5	5,5	6,5	2,5
16	26	22	35	36	50	35	22	40 ^{±0} ,15	26 ^{±0,15}	4,5	6,5	9,0	2,5
20	32	25	42	45	60	42	28	45 ^{±0,15}	32 ^{±0,15}	4,5	8,0	9,0	2,5
25	40	30	51	58	74	54	40	60 ^{±0,15}	40 ^{±0,15}	5,5	9,0	11,5	3,0
30	47	35	60	68	84	60	48	68 ^{±0,20}	45 ^{±0,20}	6,6	10,0	14,0	3,0
40	62	45	77	80	108	78	56	86 ^{±0,20}	58 ^{±0,20}	9,0	12,0	19,5	4,0
50	75	50	88	100	130	70	72	108 ^{±0,20}	50 ^{±0,20}	9,0	14,0	22,5	5,0

12	22	18	28	32	42	32	20	32 ^{±0,15}	23 ^{±0,15}	4,5	5,5	6,5	2,5
16	26	22	35	36	50	35	22	40 ^{±0} ,15	26 ^{±0,15}	4,5	6,5	9,0	2,5
20	32	25	42	45	60	42	28	45 ^{±0,15}	32 ^{±0,15}	4,5	8,0	9,0	2,5
25	40	30	51	58	74	54	40	60 ^{±0,15}	40 ^{±0,15}	5,5	9,0	11,5	3,0
30	47	35	60	68	84	60	48	68 ^{±0,20}	45 ^{±0,20}	6,6	10,0	14,0	3,0
40	62	45	77	80	108	78	56	86 ^{±0,20}	58 ^{±0,20}	9,0	12,0	19,5	4,0
50	75	50	88	100	130	70	72	108 ^{±0,20}	50 ^{±0,20}	9,0	14,0	22,5	5,0
Ø d Ángulo Angulo α R1067 R1068 Eje h6 R1068 Fig. h6 R1068 Fig. h6 R1068 R106													

Ød	Ángulo	Juego rad	lial (μm)	Tolerancia para H ³⁾	Tolerancia para H ³⁾ Caps. de carga ⁴⁾ (N)					
	α	R1067	R1068	(μm)	din. C	estát. C ₀				
		Eje h6								
(mm)	(°)									
12	66	+28		+8	1060	510				
		-1	tadc	-16						
16	68	+28	ajustado	+8	1280	630				
		-1		-16						
20	55	+31	(límite inferior)	+8	2570	1180				
		-2	te ir	-16						
25	57	+31	(limi	+8	5040	2470				
		-2	h5 (-16						
30	57	+31	con un eje h5 n estado fijo	+8	5020	2880				
		-2	un	-16						
40	56	+35	con	+8	8620	4480				
		-3	fábrica juego e	-16						
50	54	+35	de fábrica cc sin juego en	+13	12500	6620				
		-3	de	-21						

- referido a Ø d.
- 4) Las capacidades de carga son válidas para la dirección principal de carga.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

En caso de carga en dirección de apertura, observar los diagramas de Página 41.

Bosch Rexroth AG

Sets lineales con rodamientos lineales Super

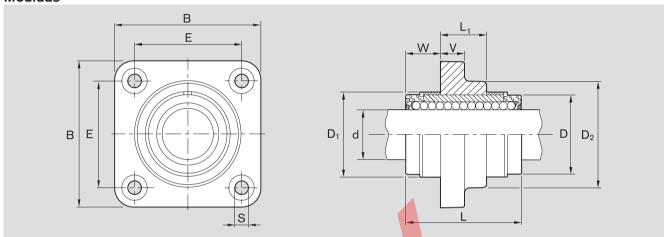
o

Sets lineales, R1081 brida

Construcción

72

- Carcasa de precisión con brida (fundición gris)
- Dos anillos de seguridad; en los diámetros de eje 12 a 40 adicionalmente dos anillos distanciadores (acero)
- Rodamientos lineales Super con o sin compensación de errores de alineación
- Retenes integrados
- Juego radial no ajustable
- Sin lubricación inicial



Eje	Referencia	Peso	
	con rodamiento lineal	con rodamiento lineal	
Ød	Super con dos retenes	Super con dos retenes	
(mm)	LSGF-ADD	LSGF-BDD	(kg)
12	R1081 612 40	R1081 812 40	0,095
16	R1081 616 40	R1081 816 40	0,16
20	R1081 620 40	R1081 820 40	0,30
25	R1081 625 40	R1081 825 40	0,57
30	R1081 630 40	R1081 830 40	1,85
40	R1081 640 40	R1081 840 40	1,65
50	R1081 650 40	R1081 850 40	3,40

Ejemplo de aclaración de abreviación

LS	G	F	Α	20	DD
Set lineal	Fundición	Brida	Super	Ø 20	2 juntas

Encontrará más información acerca de la abreviación en Página 39.

Medidas (m	m)										Juego radial (μm)	Caps. de carg	a (N)
Ød	B ¹⁾	L	L ₁	D	D ₁	D ₂ ¹⁾	E	S	V ¹⁾	W	Eje h6	din. C	estát. C ₀
					+0,8			H13					
12	42	32	12	22	24,0	28	30 ^{±0,12}	5,5	6	10,0	+38	830	420
											+10		
16	50	36	15	26	28,5	34	35 ^{±0,12}	5,5	8	10,5	+38	1020	530
											+10		
20	60	45	18	32	35,0	42	42 ^{±0,15}	6,6	10	13,5	+43	2020	1050
											+11		
25	74	58	23	40	43,0	54	54 ^{±0,15}	6,6	12	17,5	+43	3950	2180
											+11		
30	84	68	26	47	49,5	62	60 ^{±0,25}	9,0	14	21,0	+43	4800	2790
											+11		
40	108	80	36	62	66,5	80	78 ^{±0,25}	11	16	22,0	+50	8240	4350
											+12		
50	130	100	72	75	81,0	98	98 ^{±0,25}	11	18	14,0	+50	12060	6470
											+12		

¹⁾ Tolerancia ISO 8062-3 - DCTG 9.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Rodamientos lineales Super 1 y 1 1

Sinopsis del producto

Las ventajas

- Rodamiento lineal muy preciso para mover grandes masas
- Insertos de acero con ranuras guía rectificadas y espalda rectificada para la máxima precisión
- Super con más pistas de rodadura que Super .
- Super
 con más pistas de rodadura aún para capacidad de carga y rigidez mayores.
- Gran velocidad de desplazamiento (hasta 5 m/s)
- Compensa flexiones de ejes y errores de alineación
- Con o sin retenes integrados
- Juntas longitudinales para rodamiento lineal abierto como opción
- Sets lineales con carcasa de aluminio

Super (cerrado)

R0733 Página 84

Super (abierto)

R0730 Página 86

Super

(cerrado)

Super
(abierto)

Aclaración de la abreviación

Ejemplo de rodamiento lineal: Rodamiento lineal Super 3

KBSH-O-20-DD

Definición de la abreviación KB SH O 20 DD
Tipo Rodamiento lineal = KB

Tipo	Rodamiento linea	l = KB
Serie	Super	= H
	Super 🖭	= SH
Forma constructiva	Cerrado	=
	Abierto	= O
Diámetro de eje		= 20

VD	=	Completamente estanco	Juntas
		con 2 juntas	
D	=	con 1 junta	
	=	sin junta	

Cerrado

Cerrado, ajustable

Abierto

Abierto, ajustable

Con abertura lateral, ajustable

Ejemplo de set lineal:

Set lineal con rodamiento lineal Super LSAH-OE-H-20-DD

Definición de la abrevia	ción		LS	Α	HOE	Н	20	DD		
Tipo	Set lineal	= L	S					\	/D = Completamente estanco	Juntas
Material (carcasa)	Aluminio	= A		-					= con 2 juntas	
(solo en set lineal)									DD = sin junta	
Forma constructiva	Gran capacidad de car	ga = H			_			2	0 =	Diámetro de eje
	Cerrado	=						Н	Super ©	Serie
	Abierto	= C						S	H Super 🖭	
	Con abertura lateral	= S								
	Aiustable	= F								

Rodamientos lineales Super 1 y 1 1

Datos técnicos

Tenga también en cuenta las bases técnicas generales, así como las indicaciones de lubricación y de montaje.

Dimensiones de montaje/ intercambiabilidad Estanqueidad

Protección doble mediante retenes que actúan por ambos lados:

- el labio de estanqueizado exterior evita la entrada de suciedad;
- el labio de estanqueizado interior evita la pérdida prematura de producto lubricante.

En los rodamientos lineales cerrados, los retenes están alojados en suspensión. Ello les permite adaptarse debidamente a todos los estados operativos.

Los rodamientos lineales abiertos están ade<mark>más</mark> completamente estanqueizados a lo largo del eje mediante regletas de estanqueidad. Todos los retenes pueden sustituir-se posteriormente.

Fricción

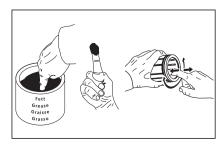
Los coeficientes de fricción μ de los rodamientos lineales Super sin retenes son, con lubricación de aceite, de 0,001 - 0,004.

Bajo cargas elevadas, la fricción es mínima. Sin embargo, si las cargas son muy pequeñas, las fricciones pueden ser mayores que los valores indicados.

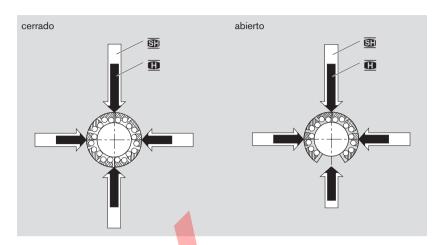
En la tabla se muestran las fuerzas de fricción de los rodamientos lineales Super con retenes integrados en ambos lados y sin carga radial. Dependen de la velocidad y la lubricación.

Eje	cerrado y ajustable		abierto				
Ød	con retenes integra	dos	completamente estancos				
	Fuerza de arranque	Fuerza de ficción	Fuerza de arranque	Fuerza de ficción			
(mm)	Valor orientativo (N)	Valor orientativo (N)	Valor orientativo (N)	Valor orientativo (N)			
20	5	2,5	7,5	4,0			
25	7	3,0	10,5	4,5			
30	9	4,0	13,5	6,0			
40	12	5,0	18,0	7,5			
50	15	6,0	22,5	9,0			
60	18	7,0	27,0	10,5			

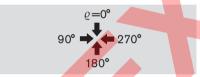
Velocidad $v_{max} = 5 \text{ m/s}$


Aceleración $a_{max} = 150 \text{ m/s}^2$

Temperatura de servicio De -20 °C a 80 °C

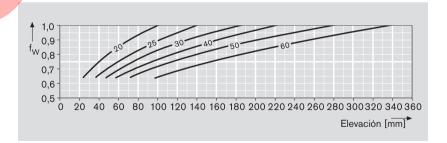

Primera lubricación

Los rodamientos lineales Super v s no se suministran con una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 22.


Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.

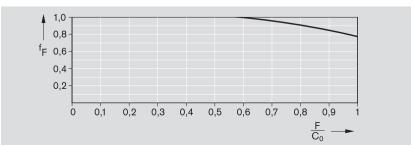
Influencia de la dirección de carga en la capacidad de carga

Direcciones de carga principales

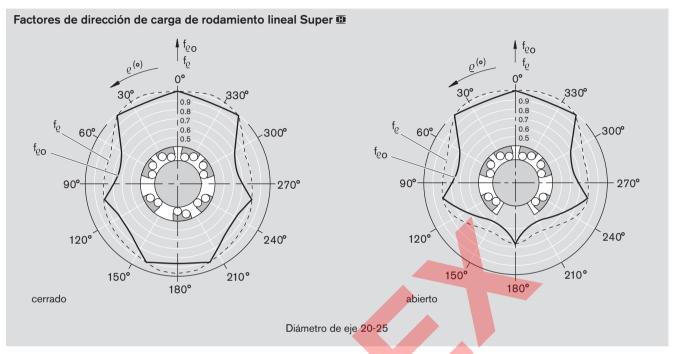

Factores de dirección de carga

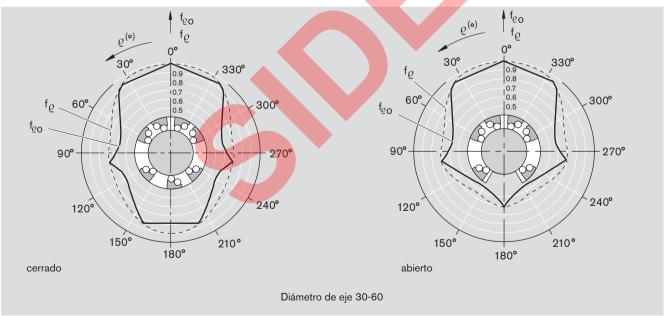
Las capacidades de carga C y C_0 son válidas para la dirección principal de carga $\rho=0^\circ$. Para todas las demás direcciones de carga, las capacidades de carga deben multiplicarse por los factores f ρ (capacidad de carga dinámica C) o f ρ_0 (capacidad de carga estática C_0).

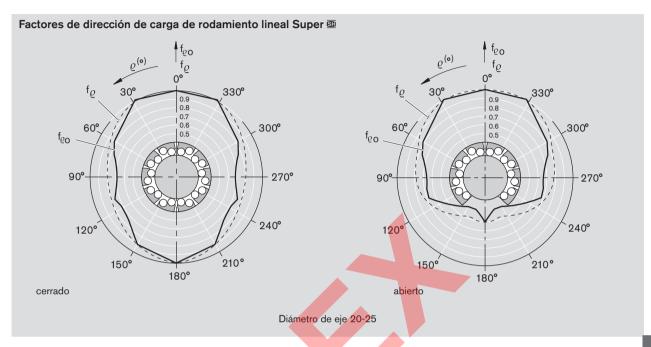
Factor de dirección de carga fo Eje Ød Rodamiento lineal Super @ Rodamiento lineal Super 1911 (mm) 20-25 0,79 0,52 0,80 0,98 0,80 0,67 0,79 30-60 0,70 0,91 0,70 0,62 0,86 0,59 0,86 Factor de dirección de carga fρ₀ 20-25 0,70 0,87 0,70 0,67 0,68 0,68 0,50 0,83 30-60 0,62 0,80 0,62 0,61 0,83 0,55

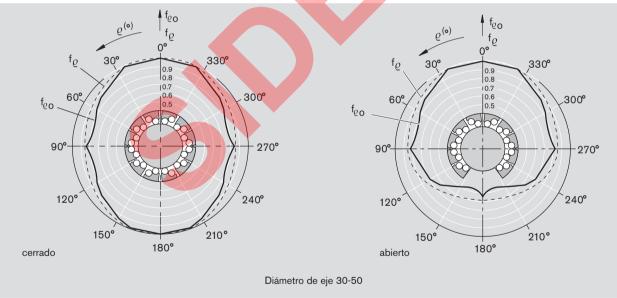

Disminución de capacidad de carga con carrera corta

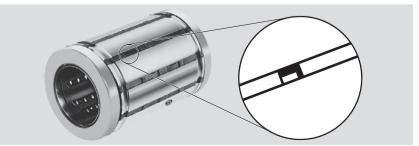
En caso de carrera corta, la duración de vida de los ejes es menor que la de los rodamientos lineales Super. Las capacidades de carga C indicadas en las tablas deben multiplicarse, por lo tanto, por el factor f_W .


Disminución de capacidad de carga con cargas elevadas


En caso de carga F elevada, disminuye la capacidad de carga. La capacidad de carga dinámica debe multiplicarse por el factor de carga $f_{\rm F}$.


Rodamientos lineales Super • y


Datos técnicos


Los rodamientos lineales Super pueden montarse en cualquier posición de montaje. La posición de montaje debe seleccionarse de manera que la dirección principal de carga equivalga siempre a $\rho = 0^{\circ}$.

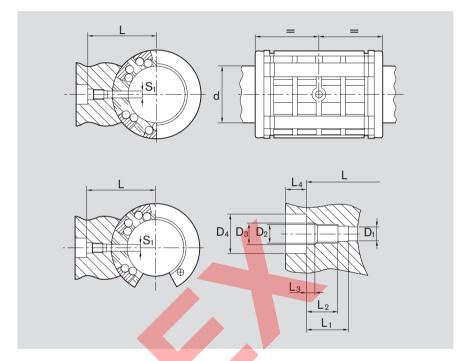
Los rodamientos lineales Super pueden montarse en cualquier posición de montaje. La posición de montaje debe seleccionarse de manera que la dirección principal de carga equivalga siempre a $\rho = 0^{\circ}$.

La dirección virtual de carga $\rho=0^\circ$ (capacidad de carga máxima) está marcada, en los rodamientos lineales Super $\overline{\mbox{\ensuremath{\mathfrak{g}}}}$ cerrados, mediante una cavidad en la jaula de plástico (véase vista detallada).

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Rodamientos lineales Super • y

Carcasa propia del cliente


Fijación

Rodamiento lineal Super

Fijación con tornillo de centraje mediante taladro de fijación $S_{\rm 1}$.

Instrucciones de montaje

Tener en cuenta la posición y los insertos de acero para el taladro de fijación S_1 .

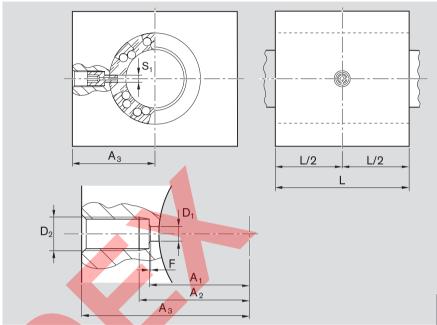
Eje	Medida	s (mm)									Tornillo de centraje		
											Referencia	Par de apriete	
Ød	S ₁	L	L ₁	L_2	L ₃	L ₄	D_1	D_2	D_3	D_4			(Nm)
(mm)		±0,1	+0,2	+0,2	+0,2	min	+0,1		H13	H13			
20	3,0	27,0	9	7,0	2,0	3,2	3,1	M4	4,5	8	R3427 008 09		1,9
25	3,5	33,5	11	8,5	2,3	4,0	3,6	M5	5,5	10	R3427 003 09		3,8
30	3,5	37,0	11	8,5	2,3	4,0	3,6	M5	5,5	10	R3427 003 09		3,8
40	3,5	44,5	11	8,5	2,3	4,0	3,6	M5	5,5	10	R3427 003 09		3,8
50	4,5	59,5	17	14,0	3,0	4,7	4,6	M6	6,6	11	R3427 004 09		6,7
60	6,0	72,5	22	18,0	4,0	6,0	6,2	M8	9,0	15	R3427 007 09		16,0

Rodamientos lineales Super
y
super

Carcasa propia del cliente

Relubricación y fijación

Rodamiento lineal Super (cerrado)

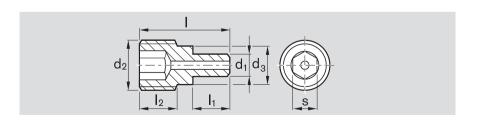

Relubricación y fijación mediante taladro de fijación S_1 .

Medidas para carcasa propia del cliente.

Instrucciones de montaje:

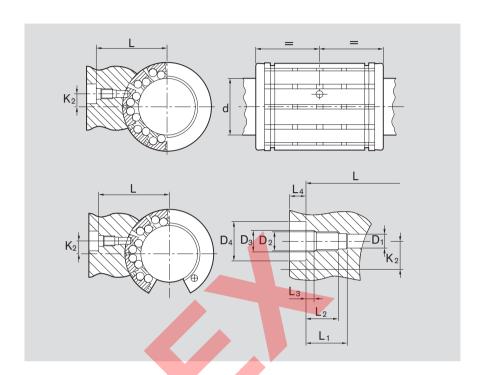
Tener en cuenta la posición y los insertos de acero para el taladro de fijación S_1 .

Los canales de lubricación representados están dimensionados para la lubricación con grasa. Si, en casos de montaje particulares, se lubrica con aceite, comprobar si llega a todos los rodamientos.



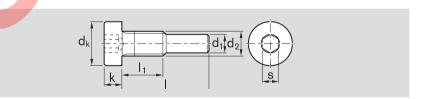
Referencia	Medida	ıs (mm)							Tornillo hueco	
Rodamiento lineal									Referencia	Par de apriete
Super	S ₁	L	D ₁	D ₂	A_1	A	$_{2}$ A_{3}	F		(Nm)
		mín.	+0,1		±0,1	máx	. mín.			
R0732 220 40	3,0	46	3,1	M8x1	18,5	20,	31,0	0,3x45°	R3432 010 00	5,5
R0732 225 40	3,5	59	3,6	M8x1	22,5	25,	38,0	0,3x45°	R3432 007 00	5,5
R0732 230 40	3,5	69	3,6	M8x1	26,0	28,	5 41,5	0,3x45°	R3432 007 00	5,5
R0732 240 40	3,5	81	3,6	M8x1	33,5	36,	49,0	0,3x45°	R3432 007 00	5,5
R0732 250 40	4,5	101	4,6	M8x1	42,0	44,	5 59,0	0,3x45°	R3432 008 00	5,5
R0732 260 40	6,0	126	6,2	M10x1	51,0	53,	71,5	0,3x45°	R3432 009 00	9,5

Tornillo hueco


para la relubricación y fijación del rodamiento lineal Super \blacksquare (cerrado) a través del taladro de fijación S_1 .

Medidas	(mm)						Tornillo hueco			
					Referencia	Par de apriete				
d_2	d ₁	d_3	- 1	I ₁	l ₂	s		(Nm)		
M8x1	3,0	6,5	10,5	5,0	3,5	4	R3432 010 00	5,5		
M8x1	3,5	6,5	14,5	6,0	5,6	4	R3432 007 00	5,5		
M8x1	4,5	6,5	18,0	8,0	7,0	4	R3432 008 00	5,5		
M10x1	6,0	8,5	25,0	11,5	10,2	5	R3432 009 00	9,5		

Rodamiento lineal Super 3


Fijación con tornillo de centraje.

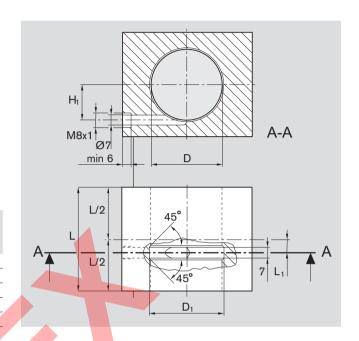
Eje	Medida	s									Tornillo de centraje		
											Referencia	Par de apriete	
Ød	L	K ₂	L ₁	L_2	L ₃	L ₄	D_1	D_2	D_3	D_4			(Nm)
(mm)	+0,2		+0,2	mín.	+0,2	min	+0,1		H13	H13			
20	26,85	1,3	9	7,0	2,0	3,2	2,6	M4	4,5	8	R3427 001 09		1,9
25	30,75	2,0	9	7,0	2,0	3,2	2,6	M4	4,5	8	R3427 001 09		1,9
30	38,15	7,0	11	8,5	2,3	4,0	3,6	M5	5,5	10	R3427 003 09		3,8
40	44,75	9,5	11	8,5	2,3	4,0	3,6	M5	5,5	10	R3427 003 09		3,8
50	59,75	10,0	17	14,0	3,0	4,7	4,6	M6	6,6	11	R3427 004 09		6,7

Tornillo de centraje

para la fijación del rodamiento lineal Super 🗓 y 💁.

Medida	s (mm))					Tornillo de centraje				
							Referencia	Par de apriete			
d_2	d _k	d_1	1	I ₁	k	s		(Nm)			
M4	7,0	2,5	12,0	6,3	2,8	2,5	R3427 001 09	1,9			
M4	7,0	3,0	14,1	6,5	2,8	2,5	R3427 008 09	1,9			
M5	8,5	3,5	17,0	8,0	3,5	3,0	R3427 003 09	3,8			
M6	10,0	4,5	26,0	13,5	4,0	4,0	R3427 004 09	6,7			
M8	13,0	6,0	33,0	17,0	5,0	5,0	R3427 007 09	16,0			

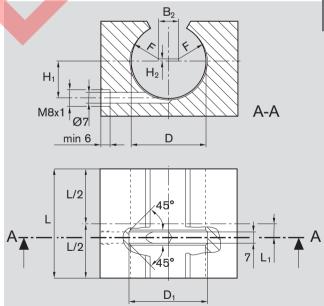
Otras medidas según DIN 7984.


Relubricación

Rodamiento lineal Super (cerrado)

Canal de lubricación, segmento y carcasa de conexión para lubricación con grasa.

Medidas para carcasa propia del cliente.


Referencia	Med	idas (mm	1)		
Rodamiento lineal Super 🖾	D	L	L ₁	H ₁	D ₁
		min	+0,5		±0,2
R0730 220 40	32	46	7,0	16,0	34
R0730 225 40	40	59	8,5	20,0	42
R0730 230 40	47	69	8,5	23,5	50
R0730 240 40	62	81	10,5	31,0	66
R0730 250 40	75	101	11.5	37.5	79

Rodamiento lineal y (abierto)

Canal de lubricación, segmento y carcasa de conexión para lubricación con grasa.

Medidas para carcasa propia del cliente.

Referencia		Medidas (m	Medidas (mm)										
Rodamiento linea	l Super	D	L	L ₁	H ₁	D ₁	B ₂	H ₂	F				
<u> </u>	<u> </u>		mín.	+0,5		±0,2							
R0733 220 45	R0731 220 45	32	46	7,0	16,0	34	8,0	_	R13				
R0733 225 45	R0731 225 45	40	59	8,5	20,0	42	11,9	0,5	R15				
R0733 230 45	R0731 230 45	47	69	8,5	23,5	49	12,8	1,0	R18				
R0733 240 45	R0731 240 45	62	81	10,5	31,0	66	19,9	1,1	R23				
R0733 250 45	R0731 250 45	75	101	11,5	37,5	79	22,6	2,0	R28				
R0733 260 45	-	90	126	13,0	45,0	94	30,8	3,0	R31,5				

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Rodamientos lineales @

Rodamientos lineales Super, R0732 cerrado

Rodamientos lineales Super, R0733 abierto

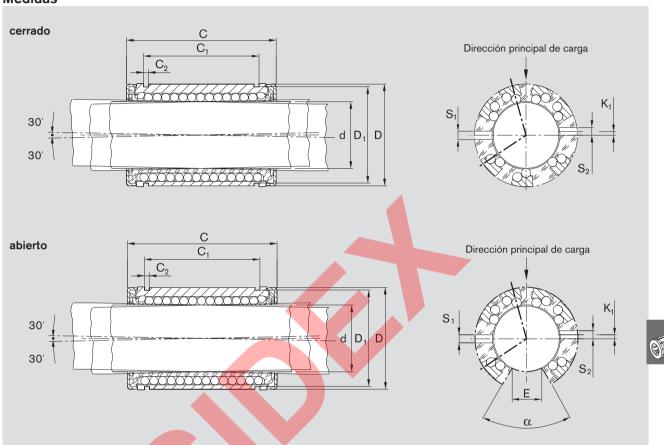
Construcción

- Jaula de guiado POM
- Insertos de acero endurecidos con ranuras guía rectificadas, así como espaldas de insertos de acero rectificadas
- Bolas de acero de rodamientos
- Compensación de errores de alineación hasta 30'
- Dos anillos de sujeción de metal
- Con o sin retenes de labio doble
- Con o sin junta longitudinal

Los valores exactos de las cuatro direcciones de carga principales pueden consultarse en "Datos técnicos – factores de dirección de carga".

Eje	Referencia				Peso
	sin	con dos	Tornillo hueco ¹⁾	Tornillo de centraje ²⁾	
Ød	Retén	Retenes			
(mm)	KBH	KBHDD			(kg)
20	R0732 020 00	R0732 220 40	R3432 010 00	R3427 008 09	0,070
25	R0732 025 00	R0732 225 40	R343 <mark>2 007 00</mark>	R3427 003 09	0,150
30	R0732 030 00	R0732 230 40	R3432 007 00	R3427 003 09	0,210
40	R0732 040 00	R0732 240 40	R3432 007 00	R3427 003 09	0,400
50	R0732 050 00	R0732 250 40	R3432 008 00	R3427 004 09	0,700
60	R0732 060 00	R0732 260 40	R3432 009 00	R3427 007 09	1,200

Con un solo retén: R0732 1.. 40 o R0733 1.. 40


Eje	Referencia				Peso
	sin	con dos	completamente	Tornillo de centraje ²⁾	
Ød	Retén	Retenes	estancos		
(mm)	KBH-O	KBH-O DD	KBH-O VD		(kg)
20	R0733 020 00	R0733 220 40	R0733 220 45	R3427 008 09	0,060
25	R0733 025 00	R0733 225 40	R0733 225 45	R3427 003 09	0,130
30	R0733 030 00	R0733 230 40	R0733 230 45	R3427 003 09	0,180
40	R0733 040 00	R0733 240 40	R0733 240 45	R3427 003 09	0,350
50	R0733 050 00	R0733 250 40	R0733 250 45	R3427 004 09	0,600
60	R0733 060 00	R0733 260 40	R0733 260 45	R3427 007 09	1,000

- 1) Véanse las medidas en Página 81
- 2) Véanse las medidas en Página 82

Ejemplo de aclaración de abreviación

KB	Н	0	20	DD
Rodamiento lineal	Super 🖸	Abierto	Ø 20	2 juntas

Encontrará más información acerca de la abreviación en Página 74.

	,	,										,		,	,		-> /> 1>
Medic	das (mm)						Hileras de bolas			Angulo	Juego r	adial (μr	n)	Caps. de car	ga ³⁾ (N)	
Ød	D	С	C ₁	C ₂	D_1	S ₁ 1)	S ₂ ¹⁾	K ₁	E ²⁾			α	Eje/tala	adro		din. C	estát. C ₀
		h13	H13			+0,1	+0,1					(°)	h6/H7	h6/K7	h6/M7		
20	32	45	31,2	1,6	30,5	3,0	-	-	9,5	7	6	60	+43	+25	+18	2520	1880
													+11	-7	-14		
25	40	58	43,7	1,85	38,5	3,5	3	-1,5	12,0	7	6	60	+43	+25	+18	4430	3360
													+11	-7	-14		
30	47	68	51,7	1,85	44,5	3,5	3	2,0	12,8	7	6	60	+43	+25	+18	6300	5230
													+11	-7	-14		
40	62	80	60,3	2,15	59,0	3,5	3	1,5	16,8	7	6	60	+50	+29	+20	9680	7600
													+12	-7	-18		
50	75	100	77,3	2,65	72,0	4,5	5	2,5	22,1	7	6	60	+50	+29	+20	16000	12200
													+12	-7	-18		
60	90	125	101,3	3,15	86,5	6,0	-	-	27,0	7	6	60	+56	+31	+21	23500	18700
													+14	-11	-21		

- 1) Los taladros se encuentran en la mitad de la medida C
- 2) Medida mínima referida a Ø d de eje
- 3) Las capacidades de carga son válidas para la dirección principal de carga

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

⚠ En caso de carga en dirección de apertura, observar los diagramas de Página 78.

Rodamientos lineales Super 3

Rodamientos lineales Super, R0730 cerrado

Rodamientos lineales Super, R0731 abierto

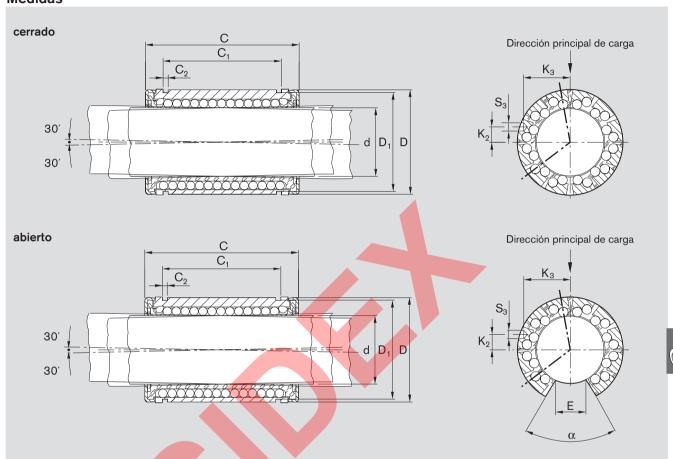
Construcción

- Jaula de quiado POM
- Insertos de acero endurecidos con ranuras guía rectificadas, así como espaldas de insertos de acero rectificadas
- Bolas de acero de rodamientos
- Compensación de errores de alineación hasta 30'
- Dos anillos de sujeción de metal
- Con o sin retenes de labio doble

 Con o sin juntas longitudinales
 Los valores exactos de las cuatro direcciones de carga principales pueden consultarse en "Datos técnicos – factores de dirección de carga".

Eje	Referencia			Peso
Ød	sin retén	con dos retenes	Tornillo de centraje	
(mm)	KBSH	KBSHDD		(kg)
20	R0730 020 00	R0730 220 40	R3427 001 09	0,009
25	R0730 025 00	R0730 225 40	R3427 001 09	0,190
30	R0730 030 00	R0730 230 40	R3427 003 09	0,300
40	R0730 040 00	R0730 240 40	R3427 003 09	0,600
50	R0730 050 00	R0730 250 40	R3427 004 09	1,050

Con un solo retén: R0730 1.. 40 o R0731 1.. 40.


Eje	Referencia				Peso
	sin retén	con dos	completamente	Tornillo de	
Ød		Retenes	estancos	centraje	
(mm)	KBSH-O	KBSH-ODD	KBSH-O VD		(kg)
20	R0731 020 00	R0731 220 40	R0731 220 45	R3427 001 09	0,075
25	R0731 025 00	R0731 225 40	R0731 225 45	R3427 001 09	0,160
30	R <mark>073</mark> 1 030 00	R0731 230 40	R0731 230 45	R3427 003 09	0,250
40	R0731 040 00	R0731 240 40	R0731 240 45	R3427 003 09	0,500
50	R0731 050 00	R0731 250 40	R0731 250 45	R3427 004 09	0,900

- 1) Véanse las medidas en Página 81
- 2) Véanse las medidas en Página 82

Ejemplo de aclaración de abreviación

КВ	SH	0	20	DD
Rodamiento lineal	Super 🕮	Abierto	Ø 20	2 juntas

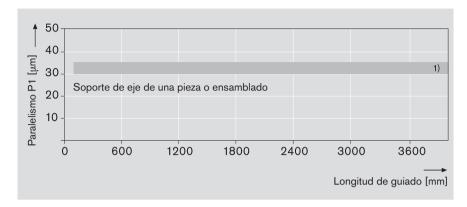
Encontrará más información acerca de la abreviación en Página 74.

Medic	lac (m	nm)								Hilorac	de holac	Ángulo	Juego r	adial (un	n)	Caps. de car	aa3) (N)
		· '		- 1		- 1)	1			i ilicias ("		•	'/		_
Ød	D	С	C₁		D_1	S ₃ ¹⁾	K ₂	K ₃	E ²⁾				Eje/tala	idro		din. C	estát. C ₀
		h13	H13			+0,1					60	(°)	h6/H7	h6/K7	h6/M7		
20	32	45	31,2	1,60	30,5	3,0	1,3	14,7	9,5	10	8	60	+43	+25	+18	3530	2530
													+11	-7	-14		
25	40	58	43,7	1,85	38,5	3,5	2,0	18,5	12,0	10	8	60	+43	+25	+18	6190	4530
													+11	-7	-14		
30	47	68	51,7	1,85	44,5	3,5	7,0	21,0	12,8	12	10	60	+43	+25	+18	6300	7180
													+11	-7	-14		
40	62	80	60,3	2,15	59,0	3,5	9,5	27,5	16,8	12	10	60	+50	+29	+20	13500	10400
													+12	-7	-18		
50	75	100	77,3	2,65	72,0	4,5	10,0	33,5	22,1	12	10	60	+50	+29	+20	22300	16800
													+12	-7	-18		

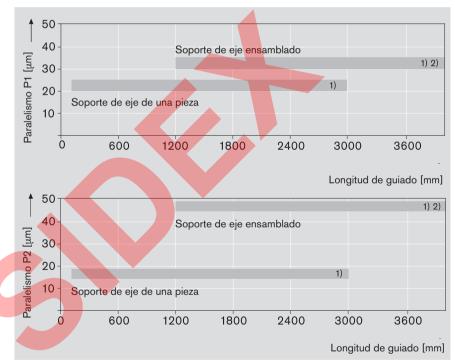
- 1) El taladro está en la mitad de la medida C
- 2) Medida mínima referida a Ø d de eje
- 3) Las capacidades de carga son válidas para la dirección principal de carga

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

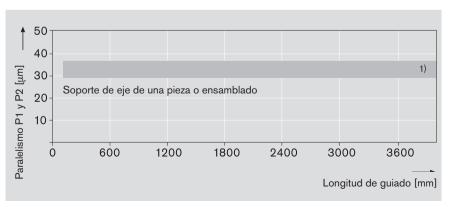
Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

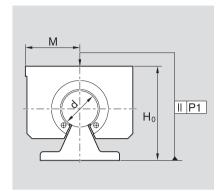

En caso de carga en dirección de apertura, observar los diagramas de Página 79.

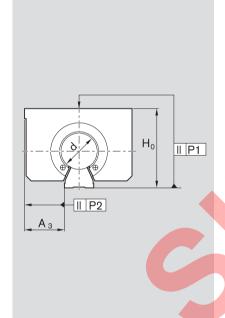
Sets lineales con rodamientos lineales Super • o •

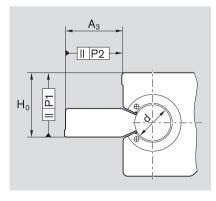

Datos técnicos

Tolerancias, paralelismo del guiado en servicio


Sets lineales R1703, R1704 y eje de acero con soporte de eje R1014 montado


Sets lineales R1703, R1704 y eje de acero con soporte de eje R1016 montado


Sets lineales R1706 y eje de acero con soporte de eje R1015 montado


- 1) Véanse los valores exactos en la tabla "Tolerancias".
- 2) Soporte de eje de varias piezas parciales de una clase.

		Campo de		Eje Ø	d (mm)	
		tolerancia	20	30	40	60
		del eje	25		50	
(mm)	Medida H ₀ ^{3) 6)}	h6	+18	+18	+18	+18
			-39	-39	-42	-45
cias ⁵⁾		h7	+18	+18	+18	+18
_			-47	-47	-51	-56
Tolerar	Paralelismo P1 ^{4) 6)}	h6	30	30	32	33
ᅙ		h7	32	32	35	35

		Campo de		Е	i je Ø d (m	m)	
		tolerancia del eje	20	25	30	40	50
	Medida H ₀ ³⁾	h6	+28	+28	+28	+28	+28
	varios soportes		-69	-69	-69	-72	-72
		h7	+28	+28	+28	+28	+28
			-77	-77	-77	-81	-81
	Medida H ₀ ³⁾	h <mark>6</mark>	57	57	57	60	60
	soporte de una pieza	h7	65	65	65	67	69
Œ	Paralelismo P1 ⁴⁾	h6	30	30	30	32	32
<u>ਹ</u>	soporte ensamblado	h7	32	32	32	35	35
as	Paralelismo P1 ⁴⁾	h6	20	20	20	22	22
nci	soporte de una pieza	h7	22	22	22	25	25
Γolerancias⁵⁾ (μm)	Paralelismo P2 ⁴⁾	h6	45	45	45	46	46
2	soporte ensamblado	h7	46	46	46	48	48
	Paralelismo P24)	h6	15	15	15	16	16
	soporte de una pieza	h7	16	16	16	18	18
	Medida A ₃ ³⁾	h6	+30	+30	+30	+30	+30
			-37	-37	-37	-38	-38
		h7	+30	+30	+30	+30	+30
	•		-41	-41	-41	-43	-43

		Campo de		Ej	e Ø d (mr	n)	
		tolerancia del eje	20	25	30	40	50
	Medida H ₀ ^{3) 6)}	h6	+20	+20	+20	+20	+20
			-35	-35	-35	-36	-36
		h7	+20	+20	+20	+20	+20
(H			-39	-39	-39	-41	-41
Folerancias⁵⁾ (µm)	Medida A ₃ 3)	h6	+20	+20	+20	+21	+21
as			-33	-33	-33	-37	-37
n.		h7	+20	+20	+20	+21	+21
era			-41	-41	-41	-46	-46
짇	Paralelismo P14) 6)	h6	29	29	29	30	30
		h7	30	30	30	32	32
	Paralelismo P2 ^{4) 6)}	h6	29	29	29	34	34
		h7	31	31	31	37	37

- 3) Medido en centro de carcasa.
- 4) Con guía atornillada tensa.
- 5) Las tolerancias son válidas para set con eje y soporte de eje.
- 6) Soporte de eje de una pieza o ensamblado

Sets lineales con rodamientos lineales Super

o

o

Sets lineales, R1701 cerrado

Sets lineales, R1702 ajustables

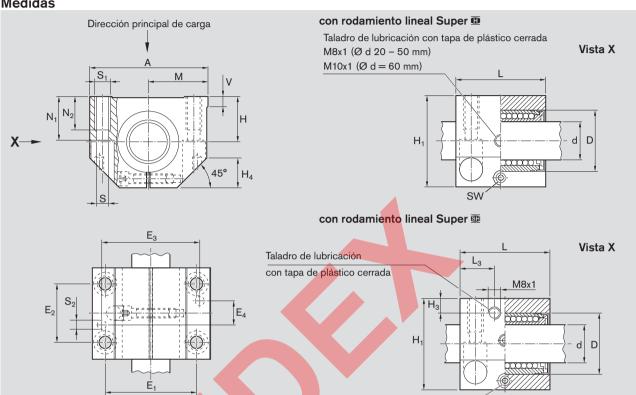
Construcción

- Carcasa de precisión (aluminio)
- Rodamiento lineal Super

 o

 o
- Compensación de errores de alineación hasta 30'
- Retenes integrados
- Fijación con tornillo
- Relubricable

Los valores exactos de las cuatro direcciones de carga principales pueden consultarse en "Datos técnicos – factores de dirección de carga".


Eje	Referencia		Peso (kg)			
	con rodamiento line	eal Super	con rodamiento lineal Super			
Ød	0	<u>s</u>	0	<u>s</u>		
(mm)	LSAH-HDD	LSAH-SHDD				
20	R1701 220 20	R1701 420 20	0,29	0,31		
25	R1701 225 20	R1701 425 20	0,58	0,63		
30	R1701 230 20	R1701 430 20	0,88	0,97		
40	R1701 240 20	R1701 440 20	1,63	1,86		
50	R1701 250 20	R1701 450 20	2,70	3,10		
60	R1701 260 20	_	5,20	-		

Eje	Referencia		Peso (kg)							
	con rodamiento line	eal Super	con rodamiento lineal Super							
Ød	<u> </u>	<u>\$</u>	0	<u>s</u>						
(mm)	LSAHE-HDD	LSAHE-SHDD								
20	R1702 220 20	R1702 420 20	0,29	0,31						
25	R1702 225 20	R1702 425 20	0,58	0,63						
30	R1702 230 20	R1702 430 20	0,88	0,97						
40	R1702 240 20	R1702 440 20	1,63	1,86						
50	R1702 250 20	R1702 450 20	2,70	3,10						
60	R1702 260 20	_	5,20	_						
25 30 40 50	R1702 225 20 R1702 230 20 R1702 240 20 R1702 250 20	R1702 425 20 R1702 430 20 R1702 440 20	0,58 0,88 1,63 2,70	0,63 0,97 1,86						

Ejemplo de aclaración de abreviación

LS	Α	HE	Н	20	DD
Set lineal cerrado	Aluminio	Gran capacidad de carga, ajustable	Rodamiento lineal Super	Ø 20	2 juntas

Medic	Medidas (mm)				7															
Ød	D	H ¹⁾	H ₁	M ¹⁾	Α	L	E ₁	E ₂	E ₃	E ₄	S	S ₁	S ₂	N ₁	N_2	H ₃	L ₃	٧	SW	H_4
		+0,008		±0,01																
		-0,016																		
20	32	25	50	30,0	60	46	45 ^{±0,15}	32 ^{±0,15}	50	15	6,6	M8	5	24	18	10,0	16	5,0	4	16
25	40	30	60	39,0	78	59	60 ^{±0,15}	40 ^{±0,15}	64	17	8,4	M10	6	29	22	10,0	21	6,5	5	20
30	47	35	70	43,5	87	69	68 ^{±0,15}	45 ^{±0,15}	72	20	8,4	M10	6	34	22	11,5	26	8,0	5	22
40	62	45	90	54,0	108	81	86 ^{±0,15}	58 ^{±0,15}	90	25	10,5	M12	8	44	26	14,0	30	10,0	6	28
50	75	50	105	66,0	132	101	108 ^{±0,20}	50 ^{±0,20}	108	85	13,5	M16	10	49	34	12,5	39	12,0	8	37
60	90	60	125	82,0	164	126	132 ^{±0,20}	65 ^{±0,20}	132	108	17,5	M20	12	59	42	-	-	13,0	10	45

Eje	Juego rad	dial ²⁾ (μm)	Caps. de carga	1 ³⁾ (N)		
Ød	R1701	R1702	con rodamient	o lineal Super		
	Eje			0		<u>s</u>
(mm)	h6		din. C	estát. C ₀	din. C	estát. C ₀
20	+43	Ē	2520	1880	3530	2530
	+11	(límite inferior) do fijo				
25	+43	<u>i</u>	4430	3360	6190	4530
	+11	mite				
30	+43		6300	5230	8800	7180
	+11	con un eje h5 n juego estano				
40	+50	n eji	9680	7600	13500	10400
	+12	l n d				
50	+50	o i	16000	12200	22300	16800
	+12	rica So se				
60	+56	de fábrica ajustado s	23500	18700	_	_
	+14	de aju				

1) Estando fijo (con los tornillos apretados) referido al Ø d.

SW

- 2) Estando fijo (con los tornillos apretados).
- 3) Las capacidades de carga son válidas para la dirección principal de carga.

El cálculo de la capacidad de carga dinámica se basa en 100 000 m de carrera. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Sets lineales con rodamientos lineales Super

o

o

Sets lineales, R1703 abierto

Sets lineales, R1704 abiertos, ajustables

Construcción

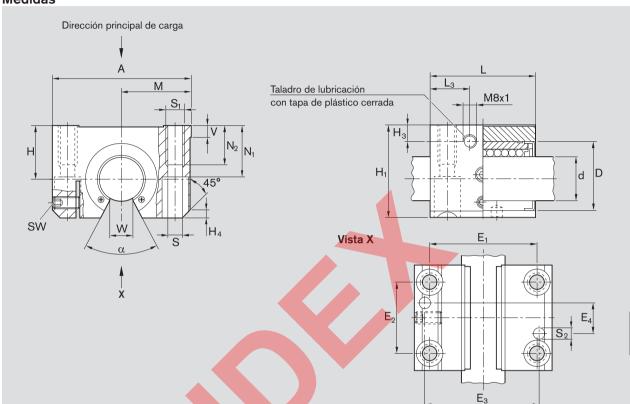
- Carcasa de precisión (aluminio)
- Rodamiento lineal Super

 o

 o
- Compensación de errores de alineación hasta 30'
- Completamente estanco
- Fijación con tornillo
- Relubricable

Los valores exactos de las cuatro direcciones de carga principales pueden consultarse en "Datos técnicos – factores de dirección de carga".

Eje	Referencia		Peso (kg)	
	con rodamiento linea	al Super ¹⁾	con rodamiento li	neal Super
Ød	0	<u>s</u>	0	<u>\$</u>
(mm)	LSAHO-HVD	LSAHO-SHVD		
20	R1703 220 70	R1703 420 70	0,24	0,26
25	R1703 225 70	R1703 425 70	0,48	0,51
30	R1703 230 70	R1703 430 70	0,72	0,79
40	R1703 240 70	R1703 440 70	1,38	1,56
50	R1703 250 70	R1704 450 70	2,30	2,60
60	R1703 260 70	_	4,40	_


Eje	Referencia		Peso (kg)						
	con rodamiento linea	al Super ¹⁾	con rodamiento lineal Super						
Ød	0	<u> </u>	0	<u> </u>					
(mm)	LSAHOE-HVD	LSAHOE-SHVD							
20	R1704 220 70	R1704 420 70	0,24	0,26					
25	R1704 225 70	R1704 425 70	0,48	0,51					
30	R1704 230 70	R1704 430 70	0,72	0,79					
40	R1704 240 70	R1704 440 70	1,38	1,56					
50	R1704 250 70	R1704 450 70	2,30	2,60					
60	R1704 260 70	_	4,40	_					

¹⁾ Completamente estancos, relubricables

Ejemplo de aclaración de abreviación

LS	Α	HOE	Н	20	VD
Set lineal	Aluminio	Gran capacidad de carga, abierto, ajustable	Rodamiento lineal Super	Ø 20	Completamente estanco

Encontrará más información acerca de la abreviación en Página 75.

Medic	das (n	nm)																			
Ød	D	H ¹⁾	H ₁	M ¹⁾	A	L	E ₁	E ₂	E ₃	E ₄	S	S ₁	S_2	N ₁	N ₂	H ₃	L ₃	V	SW	W	H ₄
		+0,008		±0,01																	
		-0,016																			
20	32	25	42	30,0	60	46	45 ^{±0,15}	$32^{\pm0,15}$	50	15	6,6	M8	5	24	18	10,0	16	5,0	2,5	9,5	3,5
25	40	30	51	39,0	78	59	60 ^{±0,15}	40 ^{±0,15}	64	17	8,4	M10	6	29	22	10,0	21	6,5	3,0	12,0	4,0
30	47	35	60	43,5	87	69	68 ^{±0,15}	45 ^{±0,15}	72	20	8,4	M10	6	34	22	11,5	26	8,0	3,0	12,8	6,0
40	62	45	77	54,0	108	81	86 ^{±0,15}	58 ^{±0,15}	90	25	10,5	M12	8	44	26	14,0	30	10,0	4,0	16,8	6,0
50	75	50	88	66,0	132	101	108 ^{±0,20}	50 ^{±0,20}	108	85	13,5	M16	10	49	34	12,5	39	12,0	5,0	22,1	6,0
60	90	60	105	82,0	164	126	132 ^{±0,20}	65 ^{±0,20}	132	108	17,5	M20	12	59	42	15,0	50	13,0	6,0	27,0	5,0

Eje	Ángulo	Juego radia	al ²⁾ (μm)	Caps. de ca	arga ³⁾ (N)			
Ød	α	R1073	R1074	con rodam	iento lineal	Super		
		Eje			0		<u>s</u>	
(mm)	(°)	h6		din. C	estát. C ₀	din. C	estát. C ₀	
20	54	+31	Ē	2520	1880	3530	2530	
		-2	erio					
25	55	+31	<u>i</u> .	4430	3360	6190	4530	
		-2	Trife fijo					
30	60	+31	con un eje h5 (limite inferior) n juego estando fijo	6300	5230	8800	7180	
		-2	e hE					
40	60	+35	o e	9680	7600	13500	10400	
		-3	n eg					
50	52	+35	0 : iii	16000	12200	22300	16800	
		-3	rica do s					
60	55	+39	de fábrica con un e ajustado sin juego	23500	18700	_	_	
		-4	aji,					

- Estando fijo (con los tornillos apretados) referido al Ø d.
- 2) Estando fijo (con los tornillos apretados).
- 3) Las capacidades de carga son válidas para la dirección principal de carga.

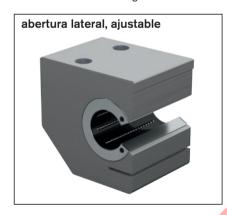
El cálculo de la capacidad de carga dinámica se basa en 100 000 m de carrera. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

⚠ En caso de carga en dirección de apertura, observar los diagramas de Página 78 y Página 79.

Sets lineales con rodamientos lineales Super

o

Sets lineales, R1706 abertura lateral, ajustable

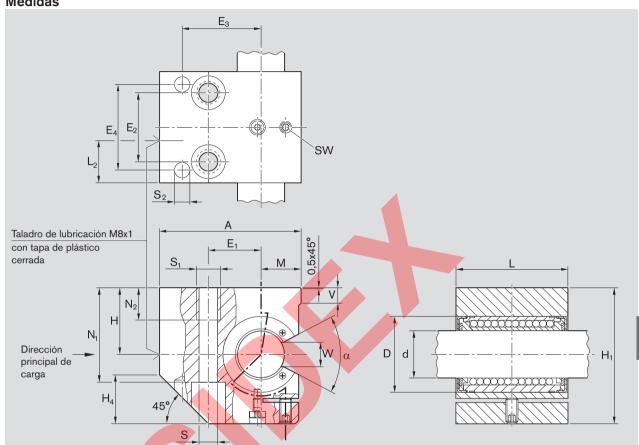

Construcción

- Carcasa de precisión (aluminio)
- Rodamiento lineal Super

 o

 o
- Compensación de errores de alineación hasta 30'
- Completamente estanco
- Fijación con tornillo
- Relubricable

Los valores exactos de las cuatro direcciones de carga principales pueden consultarse en "Datos técnicos – factores de dirección de carga".


Eje	Referencia con rodamiento linea	I Super ¹⁾	Peso (kg) con rodamiento lineal Super									
Ød	•	<u> </u>	0	<u>s</u>								
(mm)	LSAHSE-HVD	LSAHSE-SHVD										
20	R1706 220 70	R1706 420 70	0,35	0,37								
25	R1706 225 70	R1706 425 70	0,70	0,73								
30	R1706 230 70	R1706 430 70	1,03	1,10								
40	R1706 240 70	R1706 440 70	1,80	1,95								
50	R1706 250 70	R1706 450 70	3,00	3,25								

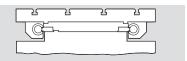
¹⁾ Completamente estancos, relubricables

Ejemplo de aclaración de abreviación

LS	Α	HSE	Н	20	VD
Set lineal	Aluminio	Gran capacidad de carga, con abertura late	eral, ajustable Rodamiento lineal Super 🕮	Ø 20	Completamente estanco

Encontrará más información acerca de la abreviación en Página 75.

Medic	das (n	nm)																		
Ød	D	H ¹⁾	H ₁	M ¹⁾	Α	L	E ₁	E_2	E ₃	E ₄	S	S ₁	S ₂	N_1	N ₂	L ₂	V	SW	W	H_4
		+0,008		±0,01																
		-0,016																		
20	32	30	60	17	60	47	22 ^{±0,15}	30 ^{±0,15}	35	35	8,4	M10	6	42	15	17,5	5,0	2,5	9,5	22
25	40	35	72	21	75	59	28 ^{±0,15}	36 ^{±0,15}	42	45	10,5	M12	8	50	18	22,0	6,5	3,0	12,0	26
30	47	40	82	25	86	69	34 ^{±0,15}	42 ^{±0,15}	52	52	13,5	M16	10	55	24	27,0	8,0	30,0	12,8	30
40	62	45	100	32	110	81	43 ^{±0,15}	48 ^{±0,15}	65	60	15,5	M20	12	67	30	31,0	10,0	4,0	16,8	38
50	75	50	115	38	127	101	50 ^{±0,15}	62 ^{±0,15}	75	75	17,5	M20	12	78	30	39,0	12,0	5,0	22,1	45


Eje Ø d		Juego radial (μm)	Caps. de carga ²⁾ (N) con rodamiento lineal Super										
				•		SH							
(mm)	(°)		din. C	estát. C ₀	din. C	estát. C ₀							
20	54	e e	2520	1880	3530	2530							
25	55	sa con 5 (límite ajustado o estan-	4430	3360	6190	4530							
30	60		6300	5230	8800	7180							
40	60	fábr eje rrior jueç jueç	9680	7600	13500	10400							
50	52	de de infe	16000	12200	22300	16800							

1) Estando fijo (con los tornillos apretados) referido al \varnothing d.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

⚠ En caso de carga en dirección de apertura, observar los diagramas de Página 78 y Página 79.

²⁾ Las capacidades de carga son válidas para la dirección principal de carga.

Rodamientos lineales Estándar

Sinopsis del producto

Las ventajas

- Ejecución robusta completamente de metal con jaula de acero para condiciones de trabajo exigentes y con suciedad
- Para utilizar en el procesamiento de madera, fundiciones y cementeras
- También anticorrosivos para la industria médica, química y alimentaria
- Muchos espacios internos como depósitos de grasa que permiten largos intervalos de lubricación o una lubricación de por vida
- Los espacios internos también sirven para retener la suciedad que haya podido entrar, evitando que los rodamientos lineales se atasquen
- Sin retenes y con jaula de acero para temperaturas de trabajo superiores a 80 °C o para aplicaciones de vacío
- Diversas formas de bridas
- Con o sin retenes integrados
- Sets lineales con carcasa de fundición/acero/aluminio

Aclaración de la abreviación

Ejemplo de rodamiento lineal: Rodamiento lineal Estándar KBM-FT-20-DD-NR

Definición de las abreviaciones	KB	M	FT	20	DD	

Delinicion de las abrevia	Ciones			ND	IVI	ГІ
Tipo	Rodamiento lineal	=	KB			
Serie	Estándar (metal)	=	М			
Forma constructiva	Cerrado	=				
	Abierto	=	О			
	Ajustable	=	Ε			
	Brida	=	F			
	Tandem	=	Т			
	Brida central	=	М			
Diámetro de eje		=	20			

1-1-1-1				
	NR	=	Anticorrosivo	Versión
		=	Normal	
	VD	=	Completamente estanco	Juntas
	DD	=	con 2 juntas	
	D	=	con 1 junta	
		=	sin junta	

R1065 Página 122

Cerrado

R1066 Página 122

Ajustable

Abierto

Abierto, ajustable

Con abertura lateral

Con abertura lateral, ajustable

Brida

Ejemplo de set lineal:

Set lineal con rodamiento lineal Estándar LSA-OE-M-20-DD

Definición de las abreviaci	ones		LS	Α	OE	M	20	VD				
Tipo	Set lineal =	= LS										
Material (carcasa)	Aluminio =	= A										
	Fundición =	= G										
	Acero =	= S										
Forma constructiva	Cerrado =	=										
	Abierto =	= O							VD	=	Completamente estanco	Juntas
	Con abertura lateral =	= S								=	sin junta	
	Ajustable =	= E							20	=		Diámetro de eje
	Brida =	= F							М	=	Estándar (metal)	Serie

Rodamientos lineales Estándar

Datos técnicos

Tenga también en cuenta las bases técnicas generales, así como las indicaciones de lubricación y de montaje.

Dimensiones de montaje/ intercambiabilidad

Los rodamientos lineales Estándar tienen las mismas dimensiones de montaje que los rodamientos lineales Super. La intercambiabilidad es posible, aunque deben tenerse en cuenta la fijación, el juego radial, las capacidades de carga y la lubricación.

Estanqueidad

Los rodamientos lineales Estándar a partir del tamaño 5 se pueden suministrar con retén. Los rodamientos lineales Estándar abiertos de los tamaños 20 a 80 también pueden suministrarse completamente estancos (con juntas longitudinales; alta fricción).

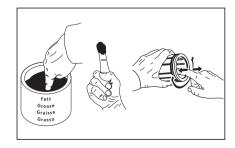
Fricción

Los coeficientes de fricción µ de los rodamientos lineales Estándar sin estanqueizar son, con lubricación de aceite, de 0,001 – 0,004.

Bajo cargas elevadas, la fricción es mínima. Con cargas muy pequeñas también puede ser mayor que el valor indicado.

Las fuerzas de fricción de los rodamientos lin<mark>eal</mark>es sin carga radial estanqueizados por ambos lados se muestran en la tabla. Dependen de la velocidad y la lubricación.

Eje	cerrado y ajustabl	е	abierto	
Ød	Fuerza de arranque	Fuerza de ficción	Fuerza de arranque	Fuerza de ficción
(mm)	Valor orientativo (N)	Valor orientativo (N)	Valor orientativo (N)	Valor orientativo (N)
5	0,8	0,4	_	_
8	1,0	0,5	_	_
10	2,0	1,0	-	_
12	6,0	2,0	8	3
16	9,0	3,0	12	4
20	12,0	4,0	16	6
25	14,0	5,0	19	7
30	18,0	6,0	24	8
40	24,0	8,0	32	11
50	30,0	10,0	40	14
60	36,0	12,0	48	16
80	45,0	15,0	60	20


Velocidad y aceleración

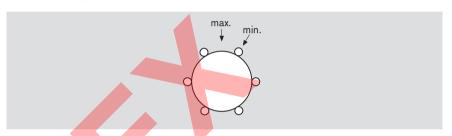
Ø d (mm)	v _{max} (m/s)	a _{max} (m/s²)
≤ 40	2,5	100
≥ 50	2,0	50

Primera lubricación

A los rodamientos lineales Estándar no se les aplica una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 22.

Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.

Temperaturas de servicio

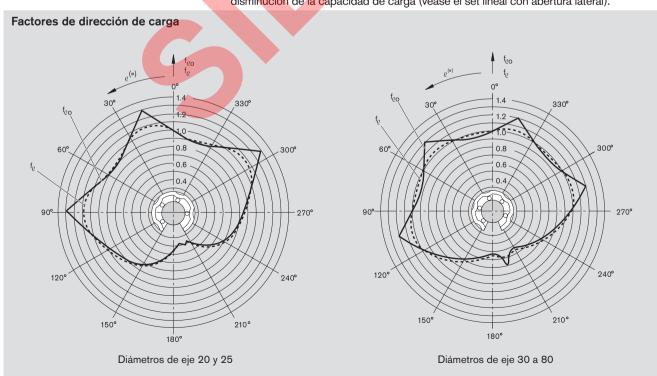

-10 °C hasta 80 °C.

En rodamientos lineales con jaula guía de acero y sin retenes se permiten temperaturas más elevadas. Tener en cuenta las reducciones de las capacidades de carga (véase "Cálculo de la duración de vida" en la página 16).

Influencia de la dirección de carga en la capacidad de carga de los rodamientos lineales Estándar cerrados y ajustables.

Las capacidades de carga detalladas corresponden al montaje en posición "mín" o "máx" y deben basarse en los cálculos.

Si la dirección de carga está claramente definida y es posible el montaje de los rodamientos lineales Super en la posición "max", pueden utilizarse las capacidades de carga C_{max} (capacidad de carga dinámica) y $C_{0 \text{ max}}$ (capacidad de carga estática). Si no es posible el montaje dirigido o la dirección de carga no está definida, deberán utilizarse las capacidades mínimas.



Influencia de la dirección de carga en la capacidad de carga de los rodamientos lineales Estándar abiertos

Las capacidades de carga C y C_0 son válidas para la dirección principal de carga $\varrho=0^\circ$. Para todas las demás direcciones de carga, las capacidades de carga deben multiplicarse por los factores f_ϱ (capacidad de carga dinámica C) o $f_{\varrho 0}$ (capacidad de carga estática C_0).

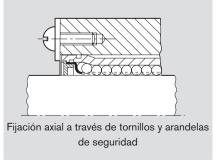
Montando correctamente los rodamientos lineales Estándar puede reducirse el factor de disminución de la capacidad de carga (véase el set lineal con abertura lateral).

Rodamientos lineales Estándar

Carcasa propia del cliente

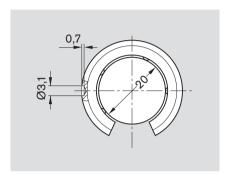
Fijación Rodamientos lineales Estándar cerrados ajustables

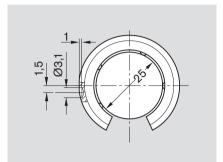
- Anillos de seguridad
- Cápsula de metal
- Construcción especial

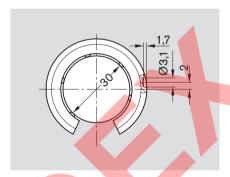


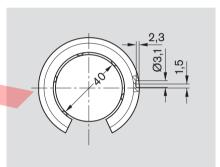
Eje	Anillos de seguridad DIN	471	Anillos de seguridad DIN 472							
Ød	Referencia	Medidas	Referencia	Medidas						
(mm)		(mm)		(mm)						
5	R3410 712 00	12 x 1	R3410 207 00	12 x 1						
8	R3410 713 00	16 x 1	R3410 208 00	16 x 1						
10	R3410 763 00	19 x 1,2	R3410 221 00	19 x 1						
12	R3410 714 00	22 x 1,2	R3410 209 00	22 x 1						
16	R3410 715 00	27 x 1,2 ¹⁾	R3410 210 00	26 x 1,2						
20	R3410 716 00	33 x 1,5 ¹⁾	R3410 211 00	32 x 1,2						
25	R3410 717 00	42 x 1,75	R3410 212 00	40 x 1,75						
30	R3410 718 00	48 x 1,75	R3410 213 00	47 x 1,75						
40	R3410 719 00	62 x 2	R3410 214 00	62 x 2						
50	R3410 720 00	75 x 2,5	R3410 215 00	75 x 2,5						
60	R3410 721 00	90 x 3	R3410 216 00	90 x 3						
80	R3410 722 00	120 x 4	R3410 217 00	120 x 4						

1) No según DIN 471.

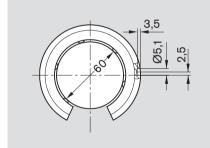

2) Para las referencias y las medidas, véanse los rodamientos lineales Super

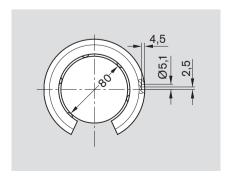

y □, carcasas propias del cliente.

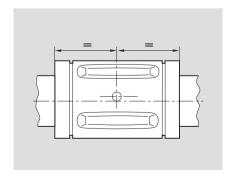

Rodamientos lineales Estándar abiertos

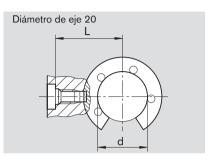

- Medidas del taladro de fijación

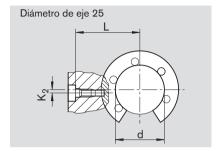

Los rodamientos lineales Estándar abiertos están provistos de un taladro de fijación. Permite la fijación axial y radial.

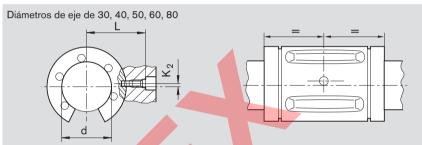


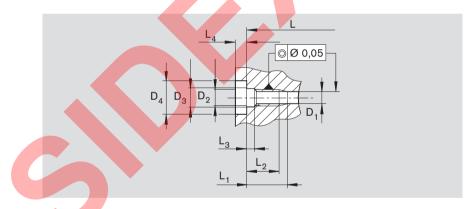




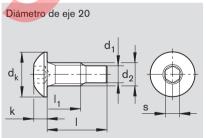

Rodamientos lineales Estándar

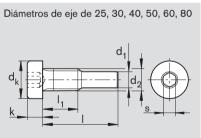

Carcasa propia del cliente


- Fijación con tornillo de centraje

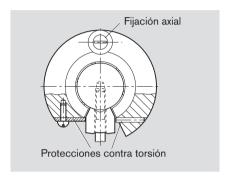

Instrucciones de montaje:

- · Los rodamientos lineales Estándar abiertos tienen un taladro para la fijación.
- En el montaje se alinea el taladro de fijación del rodamiento lineal con el taladro del tornillo de la carcasa. A continuación, se introduce el tornillo de centraje y se aprieta con el par de apriete indicado.





Tornillos de centraje


Los tornillos de centraje son autobloqueantes.

Medid	das (mm) Tornillo de centraje															traje	Peso			
Eje																	Referencia	Par de		
Ød	L	K ₂	L ₁	L ₂	L_3	L ₄	D₁	D_2	D ₃	D_4	d_2	d _k	d_1	I	I ₁	k	s		apriete	
				min.	+0,2	min.	+0,1		H13	H13									(Nm)	(g)
20	25,50_0,10	-	8,5+0,2	6,5	1,3	2,5	3,1	M4	4,5	8	M4	7,6	3	10,15	5,7	2,2	2,5	R3429 009 01	1,9	1,4
25	33,05_0,10		10,0+0,2	8,0	2,0	3,2	3,1	M4	4,5	8	M4	7,0	3	14,10	6,5	2,8	2,5	R3427 009 09	1,9	1,8
30	36,00_0,15	2,0	10,0+0,2	8,0	2,0	3,2	3,1	M4	4,5	8	M4	7,0	3	14,10	6,5	2,8	2,5	R3427 009 09	1,9	1,8
40	42,90_0,15	1,5	10,0+0,2	8,0	2,0	3,2	3,1	M4	4,5	8	M4	7,0	3	14,10	6,5	2,8	2,5	R3427 009 09	1,9	1,8
50	58,50_0,20	2,5	17,5+0,5	13,5	3,7	6,0	5,1	M8	9,0	15	M8	13,0	5	22,80	12,5	5,0	5,0	R3427 005 09	16,0	11,1
60	71,50_0,25	2,5	17,5+0,5	13,5	3,7	6,0	5,1	M8	9,0	15	M8	13,0	5	29,70	12,5	5,0	5,0	R3427 006 09	16,0	12,2
80	85,50_0,25	2,5	17,5+0,5	13,5	3,7	6,0	5,1	M8	9,0	15	M8	13,0	5	29,70	12,5	5,0	5,0	R3427 006 09	16,0	12,2

 Fijación axial a través de tornillos y arandelas de seguridad, y protección contra torsión con pasador o arandelas.

cerrados, sin retén

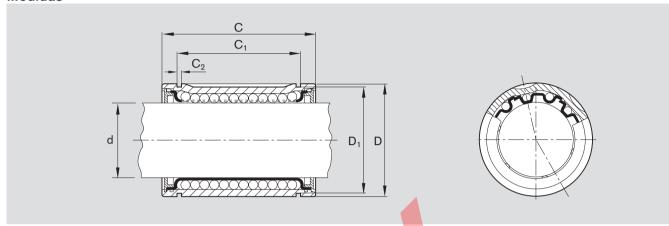
Rodamientos lineales Estándar

Rodamientos lineales Estándar, R0600

Rodamientos lineales Estándar, R0602 cerrados, con retenes

Construcción

- Casquillo templado y rectificado
- Jaula de acero (diámetro de eje 3 a 10 con jaula de material sintético de POM¹) o PA²))
- Bolas de acero de rodamientos
- Las versiones sin retenes están dotadas de anillos de retención de acero integrados; a partir de diámetro de eje 12 se permiten temperaturas más elevadas
- Con retenes integrados en caso de cargas de suciedad más elevadas
- Cerrados, para ejes sin soporte


F:-	Referencia		Peso
Eje			Peso
Ød	sin retén	con dos retenes	
(mm)	KBM	KBMDD	(kg)
3 ¹⁾	R0600 303 00	-	0,001
4 ¹⁾	R0600 304 00	-	0,002
5 ²⁾	R0600 305 00	R0602 305 10	0,010
82)	R0600 308 00	R0602 308 10	0,020
10 ¹⁾	R0600 310 00	R0602 310 10	0,030
12	R0600 012 00	R0602 012 10	0,040
16	R0600 016 00	R0602 016 10	0,050
20	R0600 020 00	R0602 020 10	0,100
25	R0600 025 00	R0602 025 10	0,190
30	R0600 030 00	R0602 030 10	0,320
40	R0600 040 00	R0602 040 10	0,620
50	R0600 050 00	R0602 050 10	1,140
60	R0600 060 00	R0602 060 10	2,110
80	R0600 080 00	R0602 080 10	4,700

Con un solo retén: R0601 ... 10.

Ejemplo de aclaración de abreviación

КВ	M	12	DD
Rodamiento lineal	Estándar (metal)	Ø 12	Con 2 juntas

Encontrará más información acerca de la abreviación en Página 96.

Medidas (mm)			Hileras	Tolerancia del	Juego radial ¹⁾	Caps. de c	arga (N)					
						de bolas	círculo inscrito	Eje h6		din. C		estát. C ₀
Ød	D	С	C ₁	C ₂	D ₁				mín	máx	mín	máx
		h12	H13				(µm)	(μm)				
3	7	10	_	_	_	4	+8	+12	55	65	45	65
							0	+2				
4	8	12	_	_	_	4	+8	+14	70	80	60	85
							0	+2				
5	12	22	14,2	1,1	11,1	4	+11	+16	180	210	140	200
							+1	+4				
8	16	25	16,2	1,1	14,7	4	+12	+18	320	370	240	330
							+2	+5				(
10	19	29	21,6	1,3	18,0	4	+8	+18	300	350	260	370
				10	00.5		0	+5	400	400	200	
12	22	32	22,6	1,3	20,5	4	+12	+20	420	480	280	400
- 40	0.0	00	0.4.0	1.0	040		+2	+5	500	0.70	4.40	
16	26	36	24,6	1,3	24,9	4	+14 +2	+22 +5	580	670	440	620
20	32	45	31,2	1,6	30,5	5	+14	+23	1170	1390	860	1250
20	32	40	31,2	1,0	30,5	3	+14	+23	1170	1390	860	1250
25	40	58	43,7	1,85	38,5	5	+16	+25	2080	2480	1560	2280
25	40	50	43,7	1,00	30,5	٦	+2	+25	2000	2400	1300	2200
30	47	68	51,7	1,85	44,5	6	+16	+25	2820	2980	2230	2860
	7,	00	01,7	1,00	44,0		+2	+6	2020	2000	2200	2000
40	62	80	60,3	2,15	58,0	6	+19	+30	5170	5480	3810	4880
			00,0	,	00,0		+2	+7		0.00	00.0	
50	75	100	77,3	2,65	71,0	6	+19	+30	8260	8740	6470	8280
			,	,	,		+2	+7				
60	90	125	101,3	3,15	85,0	6	+19	+33	11500	12100	9160	11730
							+2	+7				
80	120	165	133,3	4,15	114,0	6	+24	+37	21000	22200	16300	20850
							+2	+8				

¹⁾ Estadísticamente calculado a partir de la tolerancia del círculo inscrito y del eje. Tolerancia del taladro de la carcasa recomendada: H6 o H7.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

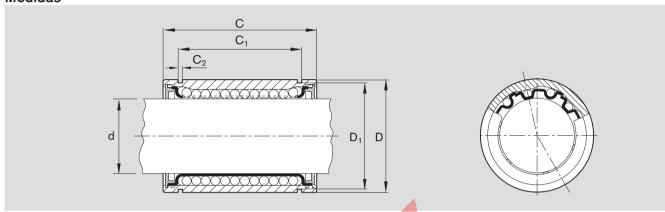
Rodamientos lineales Estándar

Rodamientos lineales Estándar, R0600 cerrados, sin retén, anticorrosivos

Rodamientos lineales Estándar, R0602 cerrados, con retenes, anticorrosivos

Construcción

- Casquillo de acero templado y rectificado de acero anticorrosivo comparable con 1.4125
- Jaula de acero anticorrosivo comparable con 1.4301
- Bolas de acero anticorrosivo comparable con 1.4125
- Anillos de retención de acero integrados de acero anticorrosivo comparable con 1.4006 o con retenes
- Cerrados, para ejes sin soporte



Eje	Referencia		Peso
Ød	sin retén	con dos retenes	
(mm)	KBMNR	KBMDD-NR	(kg)
3	R0600 003 30	-	0,001
4	R0600 004 30	-	0,002
5	R0600 005 30	R0602 005 30	0,011
8	R0600 008 30	R0602 008 30	0,022
10	R0600 010 30	R0602 010 30	0,036
12	R0600 012 30	R0602 012 30	0,045
16	R0600 016 30	R0602 016 30	0,060
20	R0600 020 30	R0602 020 30	0,100
25	R0600 025 30	R0602 025 30	0,235
30	R0600 030 30	R0602 030 30	0,360
40	R0600 040 30	R0602 040 30	0,770

Ejemplo de aclaración de abreviación

KB	M	12	DD	NR
Rodamiento lineal	Estándar (metal)	Ø 12	Con 2 juntas	Anticorrosivo

Encontrará más información acerca de la abreviación en Página 96.

Medidas (mm)			Hileras de	Tolerancia del	I Juego <mark>rad</mark> ial ¹⁾ Caps. de carga (N)								
						bolas	círculo inscrito	Eje h6			din. C		estát. C ₀
Ød	D	С	C ₁	C ₂	D_1					mín	máx	mín	máx
		h12	H13				(µm)	1)	μm)				
3	7	10	-	_	_	4	+8	+	+12	55	65	45	65
							0		+2				
4	8	12	-	_	_	4	+8	4	+14	70	80	60	85
							0		+2				
5	12	22	14,2	1,10	11,5	4	+11	+	+16	160	185	180	250
							+1		+4				
8	16	25	16,2	1,10	15,2	4	+12	+	+18	210	240	235	330
							+2		+5				
10	19	29	21,6	1,30	18,0	4	+8	+	+18	300	350	260	370
							0		+5				
12	22	32	22,6	1,30	21,0	4	+12	+	+20	400	460	420	600
							+2		+5				
16	26	36	24,6	1,30	24,9	4	+14		+22	460	530	440	630
							+2		+5				
20	32	45	31,2	1,60	30,3	5	+14	!	+23	680	800	860	1250
							+2		+6				
25	40	58	43,7	1,85	37,5	6	+16	+	+25	780	830	1620	2100
							+2		+6				
30	47	68	51,7	1,85	44,5	6	+16	+	+25	1250	1320	2000	2500
							+2		+6				
40	62	80	60,3	2,15	59,0	6	+19	!	+30	1720	1820	3300	4200
							+2		+7				

¹⁾ Estadísticamente calculado a partir de la tolerancia del círculo inscrito y del eje. Tolerancia del taladro de la carcasa recomendada H6 o H7

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

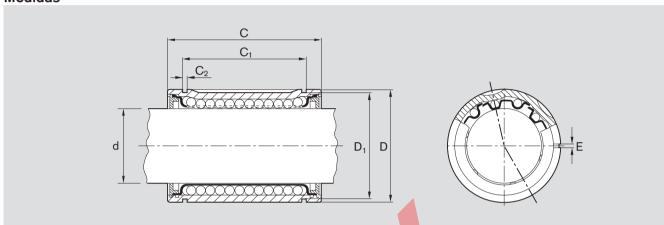
Rodamientos lineales Estándar

Rodamientos lineales Estándar, R0610 ajustables, sin retén

Rodamientos lineales Estándar, R0612 cerrados, con retenes

Construcción

- Casquillo templado y rectificado
- Jaula de acero (diámetros de eje 5 y 8 con jaula de material sintético de PA¹))
- Bolas de acero de rodamientos
- Las versiones sin retenes están dotadas de anillos de retención de acero integrados; a partir de diámetro de eje 12 se permiten temperaturas más elevadas
- Con retenes integrados en caso de cargas de suciedad más elevadas
- Juego radial ajustable


Eje	Referencia		Peso
Ød	sin retén	con dos retenes	. 655
υu	Sili leteli	con dos retenes	
(mm)	KBM-E	KBM-EDD	(kg)
5 ¹⁾	R0610 305 00	R0612 305 10	0,01
8 ¹⁾	R0610 308 00	R0612 308 10	0,02
12	R0610 012 00	R0612 012 10	0,04
16	R0610 016 00	R0612 016 10	0,05
20	R0610 020 00	R0612 020 10	0,10
25	R0610 025 00	R0612 025 10	0,19
30	R0610 030 00	R0612 030 10	0,32
40	R0610 040 00	R0612 040 10	0,62
50	R0610 050 00	R0612 050 10	1,14
60	R0610 060 00	R0612 060 10	2,11
80	R0610 080 00	R0612 080 10	4,70

Con un solo retén: R0611 ... 10.

Ejemplo de aclaración de abreviación

КВ	M	E	12	DD
Rodamiento lineal	Estándar (metal)	Ajustable	Ø 12	Con 2 juntas

Encontrará más información acerca de la abreviación en Página 96.

Medida	as (mm))					Hileras de bolas	Caps. de	carga (N)			Juego radi	al (μm)
Ød	D	С	C ₁	C ₂	D ₁	E			din. C		estát. C ₀	Eje/taladro	0
		h12	H13					mín	máx	mín	máx	h6/H7	h6/K7
5	12	22	14,2	1,10	11,1	1,5	4	180	210	140	200	+34	+22
												+11	-1
8	16	25	16,2	1,10	14,7	1,5	4	320	370	240	330	+36	+24
												+13	+1
12	22	32	22,6	1,30	20,5	1,5	4	420	480	280	400	+41	+26
												+14	-1
16	26	36	24,6	1,30	24,9	1,5	4	580	670	440	620	+43	+28
												+14	-1
20	32	45	31,2	1,60	30,5	2,0	5	1170	1390	860	1250	+49	+31
												+16	-2
25	40	58	43,7	1,85	38,5	2,0	5	2080	2480	1560	2280	+50	+32
				4								+17	-1
30	47	68	51,7	1,85	44,5	2,0	6	2820	2980	2230	2860	+50	+32
				-								+17	-1
40	62	80	60,3	2,15	58,0	2,0	6	5170	5480	3810	4880	+60	+39
												+20	-1
50	75	100	77,3	2,65	71,0	2,0	6	8260	8740	6470	8280	+60	+39
		405	1010	0.45	25.0			44500	10100	0.1.00	4.4500	+20	-1
60	90	125	101,3	3,15	85,0	2,0	6	11500	12100	9160	11730	+68	+43
	400	405	1000	=				04000	2222	40000	22252	+22	-3
80	120	165	133,3	4,15	114,0	2,0	6	21000	22200	16300	20850	+71	+46
												+24	-1

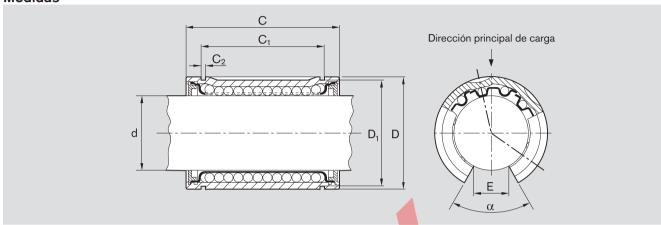
El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Rodamientos lineales Estándar, R0630 abiertos, sin retén

Rodamientos lineales Estándar, R0632 cerrados, con retenes

Construcción

- Casquillo templado y rectificado
- Jaula guía de acero
- Bolas de acero de rodamientos
- Las versiones sin retenes están dotadas de anillos de retención de acero integrados; a partir de diámetro de eje 12 se permiten temperaturas más elevadas
- Con retenes integrados en caso de cargas de suciedad más elevadas
- Con taladro de fijación para la fijación axial y radial (tamaños 12 y 16 no tienen ningún taladro)


Eje	Referencia			Peso
	sin retén	con dos	completamente	
Ød		retenes	estancos	
(mm)	KBM-O	KBM-ODD	KBM-OVD	(kg)
12 ¹⁾	R0630 012 00	R0632 012 00	_	0,03
16 ¹⁾	R0630 016 00	R0632 016 00	_	0,04
20	R0630 020 00	R0632 020 00	R0632 020 05	0,08
25	R0630 025 00	R0632 025 00	R0632 025 05	0,15
30	R0630 030 00	R0632 030 00	R0632 030 05	0,26
40	R0630 040 00	R0632 040 00	R0632 040 05	0,52
50	R0630 050 00	R0632 050 00	R0632 050 05	0,95
60	R0630 060 00	R0632 060 00	R0632 060 05	1,76
80	R0630 080 00	R0632 080 00	R0632 080 05	3,92

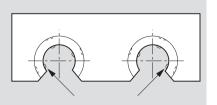
¹⁾ Sin taladro de fijación para la fijación axial y radial.

Con un solo retén: R0631 0.. 00

Ejemplo de aclaración de abreviación

KB	M	0	12	DD
Rodamiento lineal	Estándar (metal)	Abierto	Ø 12	Con 2 juntas

Medida	ıs (mm)						Ángulo	Hileras de bolas	Caps. de c	arga ²⁾ (N)	Juego radial (um) eje/
Ød	D	С	C ₁	C ₂	D ₁	E1)	α		din. C	estát. C ₀	taladro	
		h12	H13				(°)				h6/H7	h6/K7
12	22	32	22,6	1,30	20,5	7,5	78	3	430	290	+41	+26
											+14	-1
16	26	36	24,6	1,30	24,9	10,0	78	3	600	450	+43	+28
											+14	-1
20	32	45	31,2	1,60	30,5	10,0	60	4	1280	970	+49	+31
											+16	-2
25	40	58	43,7	1,85	38,5	12,5	60	4	2270	1750	+50	+32_
											+17	-1
30	47	68	51,7	1,85	44,5	12,5	50	5	2890	2390	+50	+32
											+17	-1
40	62	80	60,3	2,15	58,0	16,8	50	5	5280	4000	+60	+39
											+20	
50	75	100	77,3	2,65	71,0	21,0	50	5	8470	6900	+60	+39
											+20	-1
60	90	125	101,3	3,15	85,0	27,2	54	5	11800	9780	+68	+43
											+22	
80	120	165	133,3	4,15	114,0	36,3	54	5	21500	17400	+71	+46
											+24	-1


²⁾ Las capacidades de carga C y C_0 son válidas para la dirección principal de carga.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

⚠ En caso de carga en dirección de apertura, observar los diagramas de Página 99.

Los tamaños 12 y 16 deben montarse en la forma representada (simétricamente) para evitar que se levante el eje. No es posible ajustar sin juego un solo rodamiento lineal (carcasa ranurada con tornillo de ajuste).

Rodamientos lineales Estándar

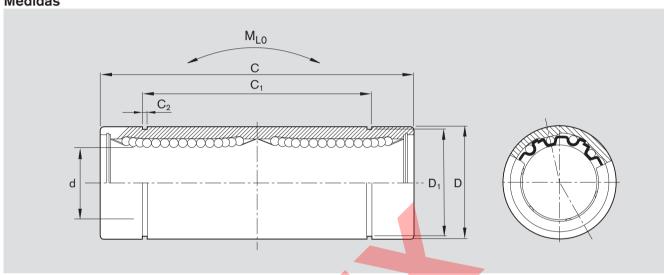
Rodamientos lineales Estándar, R0650 Tandem, con retenes normal

Construcción

- Casquillo templado y rectificado
- Jaula de guiado de POM
- Bolas de acero de rodamientos
- Retenes integrados

Rodamientos lineales Estándar, R0650 Tandem, con retenes anticorrosivos

Construcción


- Casquillo de acero templado y rectificado de acero anticorrosivo comparable con 1.4125
- Jaula de acero anticorrosivo comparable con 1.4301
- Bolas de acero anticorrosivo comparable con 1.4125 Retenes de la jaula de guiado de acero anticorrosivo comparable con 1.4006
- Retenes integrados

Eje	Referencia		Peso
Ød	normal	inoxidable	
(mm)	KBMTDD	KBMTDD-NR	(kg)
8	R0650 508 00	R0650 208 30	0,04
12	R0650 512 00	R0650 212 30	0,08
16	R0650 516 00	R0650 216 30	0,12
20	R0650 520 00	R0650 220 30	0,18
25	R0650 525 00	R0650 225 30	0,43
30	R0650 530 00	R0650 230 30	0,62
40	R0650 540 00	R0650 240 30	1,40

Ejemplo de aclaración de abreviación

Rodamiento lineal Estándar (metal)	Tandem	Ø 12	Con 2 juntas	Anticorrosivo

Medi	das (m	nm)				Hileras	Tolera	ancia del	Juego ra-	Caps.	de carga ((N)		Momento de
						de	círcul	o inscrito	dial ¹⁾ Eje		din. C		estát. C ₀	vuelco M _{L0}
Ød	D	С	C ₁	C ₂	D ₁	bolas		(µm)	h6 (μm)	mín	máx	mín	máx	(Nm)
8	16	46_0,3	33,0_0,3	1,10	15,2	4		+9	+15	340	390	470	660	4,5
		,	,					-1	+2					
12	22	61_0,3	45,8_0,3	1,30	21,0	4		+9	+17	650	750	840	1200	11,0
								-1	+2					
16	26	68_0,3	49,8_0,3	1,30	24,9	4		+11	+19	750	860	880	1260	13,0
								-1	+2					
20	32	80_0,3	61,0_0,3	1,60	30,5	5		+11	+20	1100	1300	1720	2500	26,0
								-1	+3					_
25	40	112_0,4	82,0_0,4	1,85	38,0	6		+13	+22	1250	1350	3240	4200	61,0
								-2	+2					
30	47	123_0,4	104,2_0,4	1,85	44,5	6		+13	+22	2000	2150	4000	5000	82,0
								-2	+2					
40	62	151_0,4	121,2_0,4	2,15	59,0	6		+16	+27	2800	3000	6600	8400	165,0
								-4	+1					

¹⁾ Estadísticamente calculado a partir de la tolerancia del círculo inscrito y del eje. Tolerancia del taladro de la carcasa recomendada H6 o H7

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Rodamientos lineales Estándar

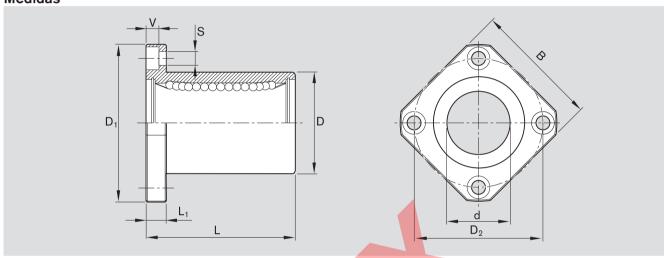
Rodamientos lineales Estándar, R0740 brida normal

Construcción

- Casquillo templado y rectificado
- Jaula de guiado de POM
- Bolas de acero de rodamientos
- Retenes integrados

Rodamientos lineales Estándar, R0740 brida anticorrosiva

Construcción


- Casquillo de acero templado y rectificado de acero anticorrosivo comparable con 1.4125
- Jaula de acero anticorrosivo comparable con 1.4301 en caso de diámetro de eje 5 de POM
- Bolas de acero anticorrosivo comparable con 1.4125
- Brida y retenes de jaula de guiado de acero anticorrosivo comparable con 1.4006
- Retenes integrados

Eje	Referencia		Peso
Ød	normal	anticorrosivo	
(mm)	KBMFDD	KBMFDD-NR	(kg)
5	R0740 505 00	R0740 505 30	0,020
8	R0740 508 00	R0740 208 30	0,033
12	R0740 512 00	R0740 212 30	0,064
16	R0740 516 00	R0740 216 30	0,090
20	R0740 520 00	R0740 220 30	0,150
25	R0740 525 00	R0740 225 30	0,300
30	R0740 530 00	R0740 230 30	0,470
40	R0740 540 00	R0740 240 30	0,980
40	NO740 040 00	NO 740 240 30	0,960

Ejemplo de aclaración de abreviación

KB	M	F	12	DD	NR
Rodamiento lineal	Estándar (metal)	Brida	Ø 12	Con 2 juntas	Anticorrosivo

Medid	as (mm)								Hileras	Tolerancia del	Juego ra-	Caps. de	e carga (N)		
Ød	D	D₁	D_2	В	L	L ₁	V	S	de	círculo inscrito			din. C		estát. Co
			_		±0,3				bolas	(μm)	h6 (μm)	mín	máx	mín	máx
5	12-0,013	28	20	22	22	5	3,1	3,5	4	+8 +0	+14 +2	160	185	180	250
8	16_0,013	32	24	25	25	5	3,1	3,5	4	+8 +0	+15 +2	210	240	235	330
12	22_0,016	42	32	32	32	6	4,1	4,5	4	+8 +0	+16 +3	400	460	420	600
16	26-0,016	46	36	35	36	6	4,1	4,5	4	+9 -1	+17 +2	460	530	440	630
20	32_0,019	54	43	42	45	8	5,1	5,5	5	+9 -1	+19 +2	680	800	860	1250
25	40_0,019	62	51	50	58	8	5,1	5,5	6	+11 -1	+20 +3	780	830	1620	2100
30	47_0,019	76	62	60	68	10	6,1	6,6	6	+11 -1	+20 +3	1250	1320	2000	2500
40	62_0,022	98	80	75	80	13	8,1	9,0	6	+13 -2	+24 +3	1720	1820	3300	4200

¹⁾ Estadísticamente calculado a partir de la tolerancia del círculo inscrito y del eje. Tolerancia del taladro de la carcasa recomendada H6 o H7

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Rodamientos lineales Estándar

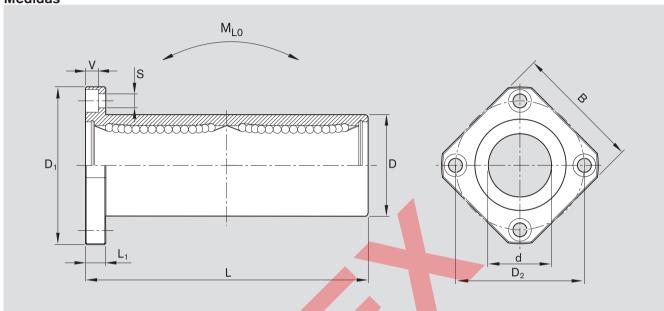
Rodamientos lineales Estándar, R0741 brida Tandem normal

Construcción

- Casquillo templado y rectificado
- Jaula de guiado de POM
- Bolas de acero de rodamientos
- Retenes integrados

Rodamientos lineales Estándar, R0741 brida Tandem normal

Construcción


- Casquillo de acero templado y rectificado de acero anticorrosivo comparable con 1.4125
- Jaula de acero anticorrosivo comparable con 1.4301 en caso de diámetro de eje 5 de POM
- Bolas de acero anticorrosivo comparable con 1.4125
- Retenes de jaula de guiado de acero anticorrosivo comparable con 1.4006
- Brida de acero anticorrosivo comparable con 1.4006
- Retenes integrados

Eje		Referencia		Peso
	Ød	normal	anticorrosivo	
(mm)	KBMFTDD	KBMFTDD-NR	(kg)
	8	R0741 508 00	R0741 208 30	0,05
	12	R0741 512 00	R0741 212 30	0,09
	16	R0741 516 00	R0741 216 30	0,14
	20	R0741 520 00	R0741 220 30	0,23
	25	R0741 525 00	R0741 225 30	0,50
	30	R0741 530 00	R0741 230 30	0,72
	40	R0741 540 00	R0741 240 30	1,60

Ejemplo de aclaración de abreviación

KB	M	FT	12	DD	NR
Rodamiento lineal	Estándar (metal)	Brida, Tandem	Ø 12	Con 2 juntas	Anticorrosivo

Medidas (mm) Hiler								Hileras	Tolera	ancia del	Juego ra-	Caps. de carga (N)				Momento de	
Ød	D	D_1	D_2	В	L	L ₁	٧	S	de	círcul	círculo inscrito dial1		din. C		•	estát. C ₀	vuelco M _{L0}
					±0,3				bolas		(µm)	h6 (μm)	mín	máx	mín	máx	(Nm)
8	16-0,013	32	24	25	46	5	3,1	3,5	4		+9	+15	340	390	470	660	4,5
											-1	+2					
12	22_0,016	42	32	32	61	6	4,1	4,5	4		+9	+17	650	750	840	1200	11
											-1	+2					
16	26_0,016	46	36	35	68	6	4,1	4,5	4		+11	+19	750	860	880	1260	13
											-1	+2					
20	32_0,019	54	43	42	80	8	5,1	5,5	5		+11	+20	1100	1300	1720	2500	26
											-1	+3					
25	40_0,019	62	51	50	112	8	5,1	5,5	6		+13	+22	1250	1350	3240	4200	61
											-2	+2					
30	47_0,019	76	62	60	123	10	6,1	6,6	6		+13	+22	2000	2150	4000	5000	82
											-2	+2					
40	62_0,022	98	80	75	151	13	8,1	9,0	6		+16	+27	2800	3000	6600	8400	165
											-4	+1					

¹⁾ Estadísticamente calculado a partir de la tolerancia del círculo inscrito y del eje. Tolerancia del taladro de la carcasa recomendada: H6 o H7.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

118

Rodamientos lineales Estándar

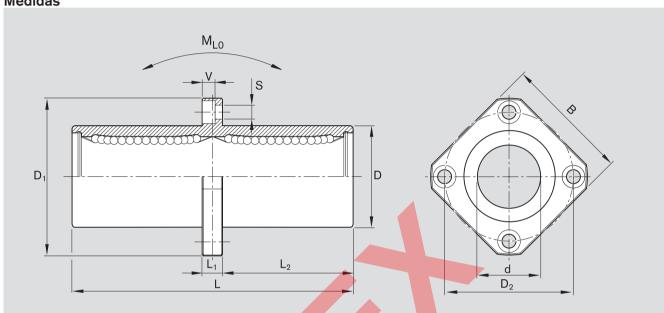
Rodamientos lineales Estándar, R0742 brida central normal

Construcción

- Casquillo templado y rectificado
- Jaula de guiado de POM
- Bolas de acero de rodamientos
- Retenes integrados

Rodamientos lineales Estándar, R0742 brida central anticorrosiva

Construcción


- Casquillo de acero templado y rectificado de acero anticorrosivo comparable con 1.4125
- Jaula de acero anticorrosivo comparable con 1.4301
- Bolas de acero anticorrosivo comparable con 1.4125
- Brida de acero anticorrosivo comparable con 1.4006
- Retenes integrados

12 R0742 512 00 R0742 212 30 16 R0742 516 00 R0742 216 30	
8 R0742 508 00 R0742 208 30 12 R0742 512 00 R0742 212 30 16 R0742 516 00 R0742 216 30	
12 R0742 512 00 R0742 212 30 16 R0742 516 00 R0742 216 30	(kg)
16 R0742 516 00 R0742 216 30	0,05
	0,09
20 R0742 520 00 R0742 220 30	0,14
	0,23
25 R0742 525 00 R0742 225 30	0,50
30 R0742 530 00 R0742 230 30	0,72
40 R0742 540 00 R0742 240 30	1,60

Ejemplo de aclaración de abreviación

KB	M	M	12	DD	NR
Rodamiento lineal	Estándar (metal)	Brida central	Ø 12	Con 2 juntas	Anticorrosivo

Med	idas (mm))								Hileras	Tolerancia del	Juego ra-	Caps. de carga (N)				Momento de
Ød	D	D ₁	D_2	В	L	L ₁	L ₂	٧	S	de	círculo inscrito	dial ¹⁾ Eje	din. C esta		stát. C ₀	vuelco M _{L0}	
					±0,3					bolas	(µm)	h6 (μm)	mín	máx	mín	máx	(Nm)
8	16_0,013	32	24	25	46	5	20,5	3,1	3,5	4	+9	+15	340	390	470	660	4,5
											-1	+2					
12	22_0,016	42	32	32	61	6	27,5	4,1	4,5	4	+9	+17	650	750	840	1200	11 (
											-1	+2					
16	26_0,016	46	36	35	68	6	31,0	4,1	4,5	4	4 +11		750	860	880	1260	13
											-1	+2					
20	32_0,019	54	43	42	80	8	36,0	5,1	5,5	5	+11	+20	1100	1300	1720	2500	26
											-1	+3					
25	40_0,019	62	51	50	112	8	52,0	5,1	5,5	6	+13	+22	1250	1350	3240	4200	61
											-2	+2					
30	47_0,019	76	62	60	123	10	56,5	6,1	6,6	6	+13	+22	2000	2150	4000	5000	82
											-2	+2					
40	62_0,022	98	80	75	151	13	69,0	8,1	9,0	6	+16	+27	2800	3000	6600	8400	165
											-4	+1					

¹⁾ Estadísticamente calculado a partir de la tolerancia del círculo inscrito y del eje. Tolerancia del taladro de la carcasa recomendada: H6 o H7.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Sets lineales con rodamientos lineales Estándar

Sinopsis

	Sets lineales Rodamientos lineales Estándar	
	Carcasa de aluminio	Carcasa de fundición/acero
Cerrado Ejecución Estándar con círculo inscrito fijo.		R1065
Ajustable Para guías sin juego o precargadas.		R1066
Abierto Para guías largas en las que se deben apoyar los ejes y grandes exigencias de rigidez.		R1067
Abierto, ajustable Para guías sin juego o precargadas.		R1068
Con abertura lateral Si en los rodamientos lineales abiertos la carga actúa en dirección contraria a la de abertura, debe contarse con una disminución de la capacidad de carga. Para evitarlo y permi- tir un montaje apropiado de los rodamientos lineales se han desarrollado los sets lineales con abertura lateral.	R1071	
Con abertura lateral, ajustable Para guías sin juego o precargadas.	R1072	
Brida Esta unidad completa las series de sets lineales y permite construcciones con el eje colocado en vertical respecto a la superficie de soporte.		R1081

Ventajas/datos técnicos/montaje

Las ventajas

- Independientemente de la dirección de carga, las carcasas de precisión ofrecen, gracias al material y el gran grosor de pared, una rigidez muy elevada incluso si se apuran las capacidades de carga permitidas.
- Las carcasas pueden alinearse muy fácilmente en el montaje, de manera que se evita una deformación de los rodamientos lineales.
- La gran precisión garantiza la seguridad de funcionamiento de nuestros rodamientos lineales y permite la total intercambiabilidad de estas unidades.
- Dado que las carcasas se fabrican en grandes tiradas, las ventajas de precio para el usuario son notables en comparación con construcciones propias; además, con la misma calidad.

Datos técnicos Temperaturas de servicio

-10 °C hasta 80 °C. A partir del tamaño 12 en retenes, se permiten temperaturas más elevadas, véase "Factor de temperatura" en la página 16.

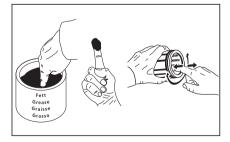
Montaje Juego radial

Los valores indicados en las tablas para el juego radial están calculados estadísticamente y corresponden a los valores que pueden darse en la práctica.

Los sets lineales R1066, R1068 y R1074 se ajustan sin juego en fábrica con un eje h5 (límite inferior) en estado fíjo.

Medida de altura

Los valores de tolerancia relativos a la medida de altura "H" indicados en las tablas de los rodamientos lineales están calculados estadísticamente y corresponden a los valores que pueden darse en la práctica.



Tornillos

Para la fijación de los sets lineales recomendamos tornillos según ISO 4762-8.8.

Primera lubricación

Los sets lineales con rodamientos lineales Estándar no vienen con una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 22. Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.

122

Sets lineales con rodamientos lineales Estándar

Sets lineales, R1065 cerrados

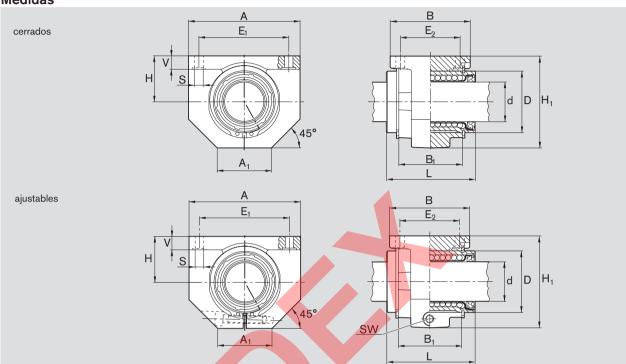
Sets lineales, R1066 ajustables

Construcción

- Carcasa de precisión (fundición gris/acero)
- Rodamiento lineal Estándar con retenes
- Dos anillos de seguridad

Eje	Referencia	Peso
Ød	con dos retenes	
(mm)	LSG-MDD	(kg)
8	R1065 208 00	0,09
12	R1065 212 00	0,16
16	R1065 216 00	0,27
20	R1065 220 00	0,45
25	R1065 225 00	0,89
30	R1065 230 00	1,33
40	R1065 240 00	2,51
50	R1065 250 00	3,68
60	R1065 260 00	6,73
80	R1065 280 00	15,32

Para temperaturas más elevadas R1065 1.. 00 (rodamiento líneal Estándar sin retenes)



Eje Ø d	Referencia con dos retenes	Peso
(mm)	LSGE-MDD	(kg)
8	R1066 208 00	0,09
12	R1066 212 00	0,16
16	R1066 216 00	0,27
20	R1066 220 00	0,45
25	R1066 225 00	0,89
30	R1066 230 00	1,33
40	R1066 240 00	2,51
50	R1066 250 00	3,68
60	R1066 260 00	6,73
80	R1066 280 00	15,32

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Ejemplo de aclaración de abreviación

LS	G	E	M	20	DD
Set lineal	Fundición	Ajustable	Rodamiento lineal Estándar	Ø 20	Con 2 juntas

Medi	das (n	nm)												Juego radia	al²⁾ (μ m)	Tolerancia para la medi-	Caps. do	le carga ⁴⁾
														R1065	R1066	da H³) (μm)	din. C	estát. C ₀
Ød	D	Н	H ₁ ¹⁾	L	A ¹⁾	A ₁ 1)	B ¹⁾	B ₁	E ₁	E ₂	S	V1)	sw	Eje h6				
8	16	15	28	25	32	16	28	14	25 ^{±0,15}	20 ^{±0,15}	3,4	5,0	2,0	+18		+6	320	240
			' ı	<u> </u>						L	<u> </u>		<u></u>	+5	ļ., i	-17	<u> </u>	1
12	22	18	35	32	42	21	32	20	32 ^{±0,15}	23 ^{±0,15}	4,5	5,5	2,5	+20	oge 1	+6	420	280
									y					+5	sin juego	-17		1
16	26	22	42	36	50	26	35	22	40 ^{±0,15}	26 ^{±0,15}	4,5	6,5	3,0	+22	.≌	+5	580	440
									11					+5	ado 1	-18		1
20	32	25	50	45	60	28	42	28	45 ^{±0,15}	32 ^{±0,15}	4,5	8,0	3,0	+23	l ust	+5	1170	860
									1					+6	.g.	-19		1
25	40	30	60	58	74	38	54	40	60 ^{±0,15}	40 ^{±0,15}	5,5	9,0	5,0	+25	con un eje h5 (límite inferior) ajustado fijo	+5	2080	1560
			<u> </u>				\Box	\Box			<u> </u>		لبا	+6	infe	-19		
30	47	35	70	68	84	41	60	48	68 ^{±0,20}	45 ^{±0,20}	6,6	10,0	5,0	+25	ite	+5	2820	2230
\rightarrow			<u> </u>	\Box	الليا	لبا	للللا				\Box		\Box	+6	<u>∰</u>	-19	<u> </u>	1
40	62	45	90	80	108	51	78	56	86 ^{±0,20}	58 ^{±0,20}	9,0	12,0	6,0	+30	h5	+4	5170	3810
			I	L			لــــــا	<u> </u>	1251555				ليا	+7	<u>.</u> <u>0</u> .	-21		1
50	75	50	105	100	130	57	70	72	108 ^{±0,20}	50 ^{±0,20}	9,0	14,0	8,0	+30	١٩	+8	8260	6470
		2	105	1.5-	127		ليا		105+005	05+0.05		45.	40.	+7	con r	-25	11-11	
60	90	60	125	125	160	70	92	95	132 ^{±0,25}	65 ^{±0,25}	11,0	15,0	10,0	+33		+8	11500	9160
	165	0.5	1==	4.5-	0.5.		12-	125	1 BC+C 50	0.0 ±0.50	15-	00.		+7	fábrica estado	-26		1
80	120	80	170	165	200	85	122	125	170 ^{±0,50}	90 ^{±0,50}	13,5	22,0	14,0	+37		+7	21000	16300
									¹I		<u> </u>	`i		+8	de	-28	<u> </u>	1

¹⁾ Tolerancia ISO 8062-3 - DCTG 9.

²⁾ Estadísticamente calculado a partir de la tolerancia del círculo inscrito y del eje. Si se tienen en cuenta el diámetro del rodamiento lineal y el taladro de la carcasa, en el eje h6 resultan valores de juego radial parecidos a los indicados en los rodamientos lineales Estándar R0610, columna "h6/H7" bajo "Juego radial ajustable".

³⁾ En estado fijo (con los tornillos apretados) referido al \varnothing d.

⁴⁾ Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la posición y la dirección de la carga no pueden definirse siempre claramente.

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Sets lineales con rodamientos lineales Estándar

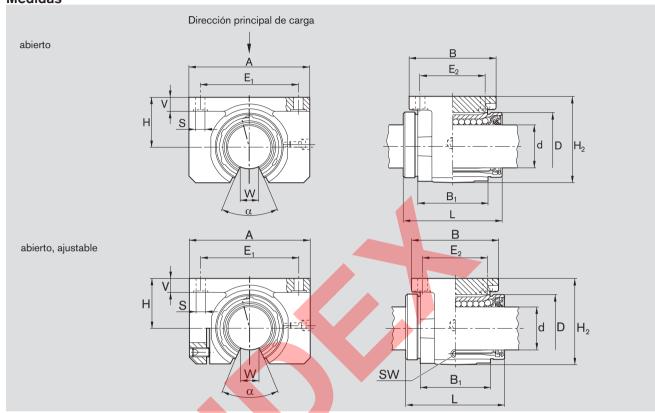
Sets lineales, R1067 abiertos

Sets lineales, R1068 abiertos, ajustables

Construcción

- Carcasa de precisión (fundición gris/acero)
- Fijación con tornillo de centraje
- Rodamiento lineal Estándar con retenes

Eje Ø d	Referencia con dos retenes	Peso
(mm)	LSGO-MDD	(kg)
20	R1067 220 00	0,39
25	R1067 225 00	0,74
30	R1067 230 00	1,14
40	R1067 240 00	2,25
50	R1067 250 00	3,13
60	R1067 260 00	5,78
80	R1067 280 00	13,15


Para temperaturas más elevadas R1067 1.. 00 (rodamiento líneal Estándar sin retenes)

Eje	Referencia	Peso
Ød	con dos retenes	
(mm)	LSGOE-MDD	(kg)
20	R1068 220 00	0,38
25	R1068 225 00	0,74
30	R1068 230 00	1,12
40	R1068 240 00	2,20
50	R1068 250 00	3,11
60	R1068 260 00	5,72
80	R1068 280 00	13,09

Ejemplo de aclaración de abreviación

LS	G	0	M	20	DD
Set lineal	Fundición	Abierto	Rodamiento lineal Estándar	Ø 20	Con 2 juntas

	,													,		, ,			
Med	das (mm)												Angulo	Juego rac	lial (µm)			le carga ⁴⁾
																	para la medi-	(N)	
														α	R1067	R1068	da H ³⁾ (μm)	din. C	estát. C ₀
Ød	D	Н	H ₂ ¹⁾	L	A ¹⁾	B ¹⁾	B ₁	E ₁	E ₂	S	V1)	W ²⁾	SW	(°)	Eje h6				
20	32	25	42	45	60	42	28	45 ^{±0,15}	32 ^{±0,15}	4,5	8	10	2,5	60	+36		+5	1280	970
															+4		-19		
25	40	30	51	58	74	54	40	60 ^{±0,15}	40 ^{±0,15}	5,5	9	12,5	3	60	+38	inferior) o	+5	2270	1750
															+4	Jer	-19		
30	47	35	60	68	84	60	48	68 ^{±0,20}	45 ^{±0,20}	6,6	10	12,5	3	50	+38	te ii	+5	2890	2390
															+4	(límite ado fijo	-19		
40	62	45	77	80	108	78	56	86 ^{±0,20}	58 ^{±0,20}	9,0	12	16,8	4	50	+45	h5 (límite ir estado fijo	+4	5280	4000
															+5	eje h en e	-21		
50	75	50	88	100	130	70	72	108 ^{±0,20}	50 ^{±0,20}	9,0	14	21,0	5	50	+45		+8	8470	6900
															+5	n u	-25		
60	90	60	105	125	160	92	95	132 ^{±0,25}	65 ^{±0,25}	11,0	15	27,2	6	54	+50	a con un sin juego	+8	11800	9780
															+5		-26		
80	120	80	140	165	200	122	125	170 ^{±0,50}	90 ^{±0,25}	13,5	22	36,3	8	54	+54	de fábric ajustado	+7	21500	17400
															+6	de	-28		

- 1) Tolerancia ISO 8062-3 DCTG 9.
- 2) Medida mínima referida a Ø d.
- 3) En estado fijo (con los tornillos apretados) referido al \emptyset d.
- 4) Las capacidades de carga son válidas para la dirección principal de carga.
- El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.
- Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

En caso de carga en dirección de apertura, observar los diagramas de Página 99.

Sets lineales con rodamientos lineales Estándar

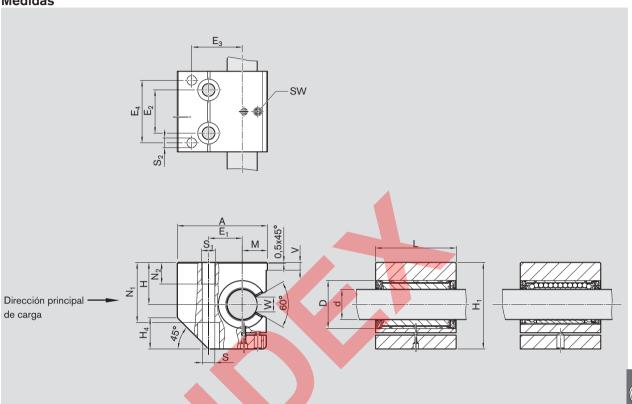
Sets lineales, R1071, con abertura lateral

Sets lineales, R1072, con abertura lateral, ajustable

Construcción

- Carcasa de precisión en construcción ligera (aluminio)
- Fijación con pasador cónico estriado
- Rodamiento lineal Estándar
- Retenes adicionales
- Sin conexión de lubricación

Si en los rodamientos lineales abiertos la carga actúa en dirección contraria a la de abertura, debe contarse con una disminución considerable de la capacidad de carga. Para evitarlo, y permitir un correcto montaje de los rodamientos abiertos, se ha desarrollado el set lineal con abertura lateral.


Eje	Referencia	Peso
Ød	con dos retenes	
(mm)	LSAS-MDD	(kg)
20	R1071 220 00	0,45
25	R1071 225 00	0,85
30	R1071 230 00	1,30
40	R1071 240 00	2,30
50	R1071-250 00	3,70

Eje	Referencia	Peso
Ød	con dos retenes	
(mm)	LSASE-MDD	(kg)
20	R1072 220 00	0,45
25	R1072 225 00	0,85
30	R1072 230 00	1,30
40	R1072 240 00	2,30
50	R1072 250 00	3,70

Ejemplo de aclaración de abreviación

LS	Α	S	M	20	DD		
Set lineal	Aluminio	Con abertura lateral	Rodamiento lineal Estándar	Ø 20	Con 2 juntas		

Ме	dida	ıs (m	m)																	Juego rad	dial^{5) (}μ m)	Caps. de (N)	e carga ⁶⁾
																				R1071	R1072	din. C	estát. C ₀
Ød	D	Α	E ₁	E ₂	E ₃	E ₄	H ¹⁾	H ₁	H ₄	L	M ¹⁾	N ₁	N_2	S2)	S ₁	S ₂ ³⁾	SW	V	W ⁴⁾	Eje h6			
			±0,15	±0,15							±0,01												
20	32	60	22	30	33	42	30+0,005		22	54	17	42	15	8,4	M10	6	2,5	5,0	10,0	+36 +4	(límite jo en	1280	970
25	40	75	28	36	42	52	35+0,005 -0,019	72	26	67	21	50	18	10,5	M12	8	3,0	6,5	12,5	+38 +4	h5 ueç	2270	1750
30	47	86	34	42	48	60	40 _{+0,005} -0,019	82	30	79	25	55	24	13,5	M16	10	3,0	8,0	12,5	+38 +4	늘	2890	2390
40	62	110	43	48	62	68	45+0,004 -0,021	100	38	91	32	67	30	15,5	M20	12	4,0	10,0	16,8	+45 +5	g :e ;⊝	5280	4000
50	75	127	50	62	70	85	50 _{+0,004} -0,021	115	45	113	38	78	30	17,5	M20	12	5,0	12,0	21,0	+45 +5	de fábrio inferior) estado f	8470	6900

- 1) En estado fijo (con los tornillos apretados) referido al Ø d.
- 2) Tornillos cilíndricos según ISO 4762-8.8.
- 3) Centrados para taladros de pasador.
- 4) Medida mínima referida a Ø d.
- 5) En estado fijo (con los tornillos apretados).
- 6) Las capacidades de carga son válidas para la dirección principal de carga.
- El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.
- Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Observe las instrucciones de montaje para sets lineales con abertura lateral.

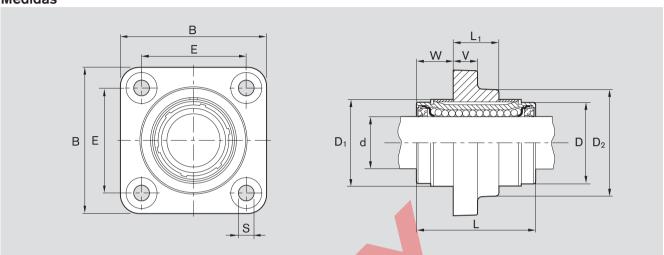
⚠ En caso de carga en dirección de apertura, observar los diagramas de Página 99.

Sets lineales con rodamientos lineales Estándar

Sets lineales, R1081 brida

Construcción

- Carcasa con brida (fundición gris)
- Dos anillos de seguridad; en los tamaños 12 hasta 40 adicionalmente dos anillos distanciadores (acero)
- Rodamiento lineal Estándar con retenes
- Juego radial no ajustable



Eje	Referencia	Peso
Ød	con dos retenes	
(mm)	LSGF-MDD	(kg)
12	R1081 212 00	0,11
16	R1081 216 00	0,18
20	R1081 220 00	0,33
25	R1081 225 00	0,63
30	R1081 230 00	1,00
40	R1081 240 00	1,90
50	R1081 250 00	4,00
60	R1081 260 00	7,40
80	R1081 280 00	14,70

Para temperaturas más elevadas R1081 1.. 00 (rodamiento líneal Estándar sin retenes)

Ejemplo de aclaración de abreviación

LS	G	F	M	20	DD
Set lineal	Fundición	Brida	Rodamiento lineal Estándar	Ø 20	Con 2 juntas

Medidas	s (mm)										Juego radial ²⁾ Eje	Caps. de carç	ga ³⁾ (N)
Ød	B ¹⁾	L	L ₁	D	D₁	$D_2^{(1)}$	Е	S	V ¹⁾	W	h6	din. C	estát. C ₀
					+0,8			H13			(μm)		
12	42	32	12	22	24	28	30 ^{±0,12}	5,5	6	10	+20	420	280
											+5		
16	50	36	15	26	28,5	34	35 ^{±0,12}	5,5	8	10,5	+22	580	440
											+5		
20	60	45	18	32	35	42	42 ^{±0,15}	6,6	10	13,5	+23	1170	860
											+6		
25	74	58	23	40	43	54	54 ^{±0,15}	6,6	12	17,5	+25	2080	1560
											+6		
30	84	68	26	47	49,5	62	60 ^{±0,25}	9,0	14	21	+25	2820	2230
											+6		
40	108	80	36	62	66,5	80	78 ^{±0,25}	11	16	22	+30	5170	3810
											+7		
50	130	100	72	75	81	98	98 ^{±0,25}	11	18	14	+30	8260	6470
											+7		
60	160	125	95	90	96	115	120 ^{±0,50}	14	22	15	+33	11500	9160
											+7		
80	200	165	125	120	129	150	155 ^{±0,50}	14	26	20	+37	21000	16300
											+8		

- 1) Tolerancia de medidas ISO 8062-3 DCTG 9.
- 2) Estadísticamente calculado a partir de la tolerancia del círculo inscrito y del eje. Si se tienen en cuenta el diámetro del rodamiento lineal y el taladro de la carcasa, en el eje h6 resultan valores de juego radial parecidos a los indicados en los rodamientos lineales Estándar R0610, columna "h6/H7" bajo "Juego radial ajustable".
- 3) Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la posición y la dirección de la carga no pueden definirse siempre claramente.
- El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.
- Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Rodamientos lineales Segmentarios

Sinopsis del producto

Las ventajas

- Como set lineal con carcasa de plástico reforzada, ligero, estable y económico.
- Muy apropiados para requerimientos generales.
- También disponibles en versión anticorrosiva para las industrias médica, química y alimenticia.
- Opcionalmente, con retenes adicionales.

Rodamientos lineales Segmentarios

Aclaración de la abreviación

Ejemplo de rodamiento lineal: Rodamientos lineales Segmentarios

KBSE-20-NR

Definición de las abreviaciones KB SE Tipo Rodamiento lineal = KB = Anticorrosivo Versión del rodamiento lineal Serie Segmentario = SE = Normal Forma constructiva Cerrado Juntas = sin junta Diámetro del eje = 20

R1060 Página 136

Ajustable

Ejemplo de set lineal: Set lineal con rodamiento lineal Segmentario LSK-20-DD-NR

Definición de las abreviaciones			LS K	20	DD NR
Tipo	Set lineal	= LS	_		
Material (carcasa) (solo en set lineal)	Plástico (con rodamiento línea Segmentario)	= K			
Forma constructiva	Cerrado	=			
Diámetro de eje		= 20		·	
Juntas	con 2 juntas	= DD			
Versión del rodamiento lineal	Anticorrosivo	= NR			
	Normal	=			

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Rodamientos lineales Segmentarios

Datos técnicos

También tenga en cuenta las bases técnicas generales, así como las indicaciones de lubricación y de montaje.

Fricción

Los coeficientes de fricción μ de los rodamientos lineales Segmentarios sin retenes son, con lubricación de aceite, 0,001 - 0,004. Bajo carga elevada, el coeficiente de fricción es mínimo; sin embargo, si las cargas son muy pequeñas, las fricciones pueden ser mayores que las indicadas.

Las fuerzas de fricción de los rodamientos lineales sin carga radial estanqueizados por ambos lados se muestran en la tabla. Dependen de la velocidad y la lubricación.

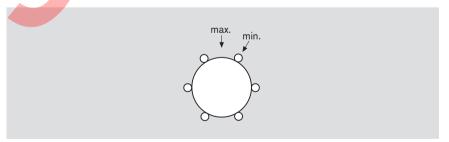
Eje Ø d	Fuerza de arranque	Fuerza de ficción
(mm)	Valor orientativo (N)	Valor orientativo(N)
12	3,0	1,5
16	4,5	2,0
20	5,0	2,5
25	7,0	3,0
30	9,0	4,0
40	12,0	5,0

Velocidad

 $v_{max} = 3 \text{ m/s}$

Aceleración

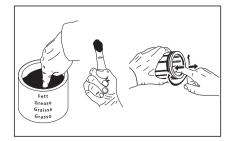
 $a_{max} = 150 \text{ m/s}^2$


Temperatura de servicio

- -10 °C hasta 80 °C (ejecución normal)
- -10 °C hasta 65 °C (ejecución anticorrosiva)

Influencia de la dirección de carga en la capacidad de carga

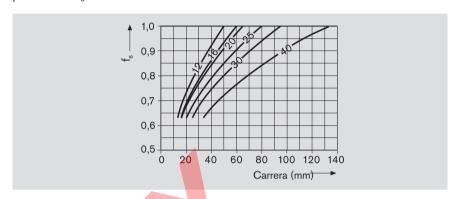
Las capacidades de carga detalladas corresponden al montaje en posición "mín" o "máx" y deben basarse en los cálculos.


Si la dirección de carga está claramente definida y es posible el montaje de los rodamientos lineales Segmentarios en la posición "máx", pueden utilizarse las capacidades de carga C_{max} (capacidad de carga dinámica) y C_{0 max} (capacidad de carga estática). Si no es posible el montaje dirigido o la dirección de carga no está definida, deberán utilizarse las capacidades mínimas.

Lubricación inicial

A los rodamientos lineales Segmentarios no se les aplica una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 21.

Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.



Montaje, fijación

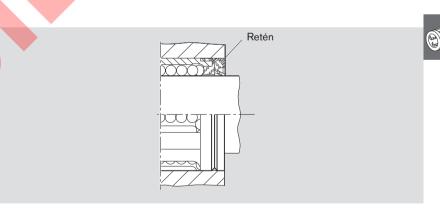
Disminución de capacidad de carga en carrera corta

En caso de carrera corta, la duración de vida de los ejes es menor que la de los rodamientos lineales Segmentarios.

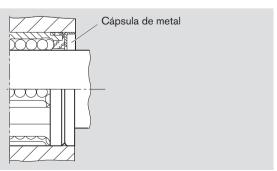
Por tanto, las capacidades de carga C indicadas en las tablas deben multiplicarse por el factor $f_{\rm s}$.

Servicio en condiciones especiales

Para casos de aplicación en ambientes constantemente húmedos o muy húmedos, causados, por ejemplo, por refrigerantes acuosos, recomendamos el rodamiento lineal anticorrosivo según ISO 683-17 / EN 10088.


Montaje

Los rodamientos lineales Segmentarios se montan a presión con un mandril (véase Montaje).


Para evitar suciedad dentro del rodamiento lineal Segmentario recomendamos, al montarlo en alojamientos ranurados, asegurarse de que un segmento de acero quede cubierto por la ranura.

Fijación

Fijación con retén

Fijación con cápsula metálica

Rodamientos lineales Segmentarios, R0668

normales

anticorrosivos

Construcción

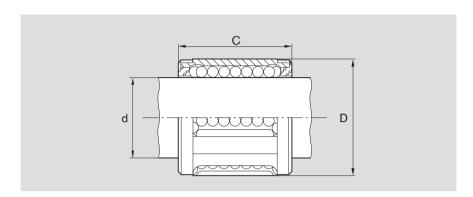
- Bolas de acero de rodamientos
- Segmentos de acero templados
- Jaula y retenes de PA 11

Construcción

- Bolas de 1.3541
- Segmentos de acero de 1.4300
- Jaula y retenes de PA 11

Eje	Referencia		Peso
	normales	anticorrosivos	(1)
(mm)	KBSE	KBSENR	(kg)
12	R0668 012 00	R06 <mark>68 0</mark> 12 30	0,013
16	R0668 016 00	R0668 016 30	0,020
20	R0668 020 00	R0668 020 30	0,031
25	R0668 025 00	R0668 025 30	0,057
30	R0668 030 00	R0668 030 30	0,096
40	R0668 040 00	R0668 <mark>040</mark> 30	0,170

Eje	Referencia		Peso
Ød	Retén normal ¹⁾	Retén anticorrosivo¹)	
(mm)			(g)
12	R1331 512 00	R1331 512 30	1,1
16	R1331 516 00	R1331 516 30	2,1
20	R1331 520 00	R1331 520 30	3,5
25	R <mark>133</mark> 1 525 00	R1331 525 30	4,9
30	R1331 530 00	R1331 530 30	7,1
40	R1331 540 00	R1331 540 30	10,6



Ød	Referencia	Peso	
	Cápsula metálica normal ¹⁾	Cápsula metálica anticorrosiva1)	
(mm)			(g)
12	R0901 043 00	R0901 043 30	0,6
16	R0901 044 00	R0901 044 30	1,6
20	R0901 045 00	R0901 045 30	2,5
25	R0901 046 00	R0901 046 30	3,4
30	R0901 047 00	R0901 047 30	4,4
40	R0901 048 00	R0901 048 30	6,7

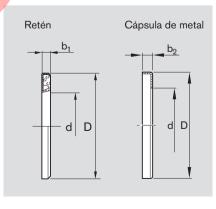
¹⁾ Para la fijación axial.

Ejemplo de aclaración de abreviación

KB	SE		12	NR
Rodamiento lineal	Segmentario	Cerrado	Ø 12	Anticorrosivo

Medid	Medidas (mm)		Hileras de	Juego radial (μm)	Caps. de	carga (N						
			bolas	Eje/taladro		normales	normales		anticorrosivos				
							din. C		estát. C ₀		din. C		estát. C ₀
Ød	D	С				mín	máx	mín	máx	mín	máx	mín	máx
		js14		h6/H7	h6/K7								
12	20	24	5	+32	+17	480	570	420	620	240	290	330	490
				0	-15								
16	25	28	5	+32	+17	720	860	620	910	360	430	490	730
				0	-15								
20	30	30	6	+33	+18	1020	1080	870	1120	510	540	690	890
				-1	-16								
25	37	37	6	+36	+18	1630	1730	1360	1750	820	870	1090	1400
				0	-18								
30	44	44	6	+36	+18	2390	2530	1960	2510	1200	1270	1570	2000
				0	-18								
40	56	56	6	+42	+21	3870	4100	3270	4180	1940	2050	2610	3340
				-1	-22								

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.


Retén

Construcción:

- Cápsula de metal
- Retén de elastómero

Cápsula de metal Material:

- Acero, normal (galvanizado)
- o anticorrosivo de 1.4301.

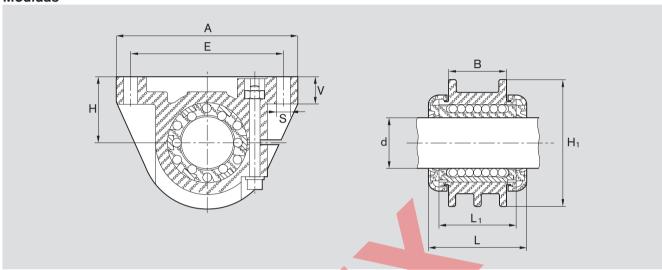
Medidas	s (mm)		
Ød	D ¹⁾	b ₁	b ₂
		+0,3	+0,5
12	20	3	3
16	25	3	3
20	30	4	4
25	37	4	4
30	44	5	5
40	56	5	5

 El diámetro exterior D está fabricado con un sobredimensionamiento de aprox. 0,1 mm.
 No se requiere de una fijación adicional. Sets lineales con rodamientos lineales Segmentarios

Sets lineales, R1060 ajustables, normales o anticorrosivos

Construcción

- Soporte de rodamiento de PA reforzada
- Ligero, estable y económico
- Con rodamiento lineal Segmentario
- También en versión anticorrosiva con KBSE-NR
- Dos retenes intercambiables
- Juego radial ajustable



Eje	Referencia	Peso	
Ød	normales	anticorrosivos¹)	
(mm)	LSKDD	LSKDD-NR	(kg)
12	R1060 212 00	R1060 212 20	0,041
16	R1060 216 00	R1060 216 20	0,063
20	R1060 220 00	R1060 2 <mark>20 2</mark> 0	0,077
25	R1060 225 00	R1060 225 20	0,158
30	R1060 230 00	R1060 23 <mark>0 20</mark>	0,277
40	R1060 240 00	R1060 240 20	0,470

¹⁾ Tornillo, arandela y tuerca anticorrosivos de A2

Ejemplo de aclaración de abreviación

LS	K			12	DD	NR
Set lineal	Plástico (con rodamiento línea Segmentario)	Cerrado	Ø 12	Con 2 juntas	Anticorrosivo

Medidas (mm)									Juego radial (µm)	Caps. de	carga ²⁾ (N)			
											normales	;	anticorrosi	/os
Ød	H ¹⁾	H ₁	L	L ₁	Α	В	Е	S	V		din. C	estát. C ₀	din. C	estát. C ₀
12	18 ^{±0,05}	35	31	24	55	20	43 ^{±0,15}	4,4	8,0	or)	480	420	240	330
16	22 ^{±0,05}	42	35	28	66	22	53 ^{±0,20}	5,5	9,5		720	620	360	490
20	25 ^{±0,08}	50	38	30	69	23	58 ^{±0,25}	5,5	10,5		1020	870	510	690
25	30 ^{±0,08}	60	46	37	87	30	72 ^{±0,25}	6,6	11,5	ca lími o si fijo	1630	1360	820	1090
30	35 ^{±0,10}	70	55	44	97	36	80 ^{±0,30}	6,6	13,0	무 요 요 요	2390	1960	1200	1570
40	45 ^{±0,10}	90	67	56	124	48	103 ^{±0,30}	8,6	17,0	de fá eje h ajust: estac	3870	3270	1940	2610

¹⁾ Referido a la medida nominal de eje d.

²⁾ Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la posición y la dirección de la carga no pueden definirse siempre claramente.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Rodamientos lineales Radiales

Sinopsis del producto

Las ventajas

- Rodamiento lineal muy preciso para mover grandes masas
- Desviación de bolas radial para un gran número de hileras de bolas y capacidades de carga elevadas
- Rigidez de carga muy elevada
- Gran suavidad de marcha
- Completamente estanco o sin retenes
- Versión para cargas pesadas con grado de libertad en dirección circunferencial
- Para aplicaciones donde otras guías lineales sufrirían tensiones adicionales a causa de estructuras irregulares.
- Sets lineales con carcasa de acero
- Sets Radiales Compactos para construcciones muy compactas

Set Radial Compacto abierto, ajustable

Aclaración de la abreviación

Ejemplo de rodamiento lineal:

Rodamientos lineales Radiales

KBR-30-VD

Rodamientos lineales Radiales

KB-RCS-E-30-VD

Definición de las abreviaciones							
Tipo Rodamiento lineal = KB							
Serie	Radial	= R					
	set Compacto	= CS					
	ajustable	=E					
Diámetro de eje		= 30					

-1				
	VD	=	Completamente estanco	Juntas
	DD	=	con 2 juntas	
		=	sin junta	

Set lineal con abertura lateral, ajus-

Ejemplo de set lineal:

Set lineal con rodamiento lineal Radial (con abertura lateral, ajustable) LSRSE-30-DD

Definición de las abreviaciones		LS R E 30 DD
Tipo	Set lineal	= LS
Serie	Radial, abierto	= R
	Radial, con abertura lateral	= S
Carcasa	ajustable	= E
Diámetro de eje		= 30
Junta	2 juntas	= DD

Rodamientos lineales Radiales

Datos técnicos

Tenga en cuenta las bases técnicas generales y las instrucciones de montaje expuestas al inicio del catálogo y las siguientes indicaciones técnicas adicionales.

Estanqueidad

Los rodamientos lineales Radiales pueden

- suministrarse como rodamientos lineales completamente estancos con retenes integrados y punta longitudinal o
- con retenes separados

Fricción

Los coeficientes de fricción μ de los rodamientos lineales Radiales sin estanqueizar son, con lubricación de aceite, 0,001 - 0,002.

Los rodamientos lineales Radiales con retenes y/o completamente estanqueizados alcanzan los siguientes valores de fricción:

Eje	retenes adicionales		com	completamente estanco			
Ød	Fuerza de arranque	Fuerza de ficción	Fuerz	za de arranque	Fuerza de ficción		
(mm)	Valor orientativo (N)	Valor orientativo (N	Val	or orientativo (N)	Valor orientativo (N)		
30	24	8		24	12		
40	32	11		32	16		
50	40	14	1	40	20		
60	48	16		48	24		
80	60	20		60	30		

Velocidad

 $v_{max} = 2 \text{ m/s}$

Aceleración

 $a_{max} = 50 \text{ m/s}^2$

Temperatura de servicio

De -20 °C a 100 °C

retenes adicionales -20 °C a 80 °C, brevemente 100 °C

Rigidez

Puede conseguirse una construcción precisa y con poca suspensión combinando el rodamiento lineal Radial y un eje de guiado apoyado por toda su longitud.

La siguiente figura muestra la suspensión en función de la carga. El diagrama es válido para el montaje:

- sin precarga
- sin juego (sin precarga)
- para la dirección de cargap = 0° − 90° y 270° − 360°

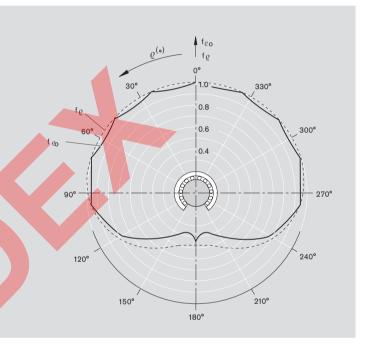
Rigidez de los rodamientos lineales Radiales

En caso de montaje con precarga, la suspensión es menor. La suspensión adicional de todos los componentes de una versión lineal (carcasa, eje, soporte de eje) depende de la dirección de carga.

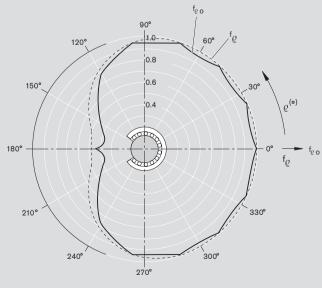
Valores orientativos para la suspensión total: con elementos R1076 y R1018: factor de dirección de carga multiplicado por la suspensión ∂ (diagrama de la derecha).

Dirección de carga ρ	0°	90°	180°	270°
Suspensión total	1 ⋅ ∂	1,8 ⋅ ∂	3,5 ⋅ ∂	1,8 ⋅ ∂

Influencia de la dirección de carga en la capacidad de carga


Las capacidades de carga C y C_0 indicadas en los rodamientos lineales Radiales son válidas para la adquisición de carga $\varrho=0^\circ$. Si la carga exterior actúa en un ángulo de $\varrho=90^\circ-270^\circ$, debe contarse con una reducción de la capacidad de carga. En ese caso, la dirección de carga resulta de la multiplicación de la capacidad de carga C o C_0 indicada con los factores de dirección de carga f_ϱ y/o $f_{\varrho 0}$. Mediante el montaje preciso de rodamientos lineales Radiales puede evitarse esta reducción de la capacidad de carga.

Factores de dirección de carga


Rodamientos lineales Radiales R0678

Sets lineales, R1076 abiertos, ajustables

Sets Radiales Compactos, R1613 abiertos, ajustables

Sets lineales, R1078 con abertura lateral, ajustables

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Rodamientos lineales Radiales

Montaje, fijación

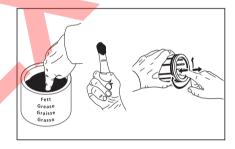
Instrucciones de montaje, fijación

Con el fin de evitar la flexión del eje, el eje debe sujetarse por toda su longitud. Véase el capítulo relativo a los ejes de acero con soportes de ejes montados para rodamientos lineales Radiales.

El rodamiento lineal Radial se introduce a presión en la carcasa de acuerdo con las instrucciones de montaje.

Para aplicaciones con vibraciones o altas aceleraciones, especialmente para montajes en vertical, es necesario una fijación adicional.

Al realizar el montaje asegurarse de, en primer lugar, atornillar los ejes con los soportes de eje, a continuación, alinear la carcasa con los rodamientos lineales Radiales con respecto a los ejes y, para terminar, atornillarlos a la mesa.


Tolerancias de montaje recomendadas

Las tolerancias de los taladros pueden consultarse en la tabla de medidas para rodamientos lineales Radiales. La carcasa puede dotarse en un lado de una ranura y un tornillo de ajuste para poder ajustar la ausencia de juego o una precarga determinada. Los rodamientos lineales Radiales pueden suministrarse como set lineal completo con carcasa. Las desviaciones de paralelismo pueden consultarse en "Bases técnicas generales e instrucciones de montaje", al inicio del catálogo.

Primera lubricación

A los rodamientos lineales Radiales no se les aplica una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 21.

Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.

Indicaciones de lubricación

Lubricación a través de taladro de lubricación solo con el eje introducido, hasta que salga el lubricante.

Instrucciones de montaje para rodamientos lineales Radiales Para evitar daños en el montaje, el rodamiento lineal Radial solo debe introducirse a presión en el taladro de la carcasa con ayuda de una prensa y/o un dispositivo de extracción. El montaje debe realizarse observando las siguientes figuras e instrucciones. Antes de iniciar montaje, cerciorarse de que la superficie exterior del rodamiento lineal Radial y el taladro de la carcasa estén limpios de aceite.

Colocar el anillo de montaje¹⁾ de acuerdo con la figura y ajustarlo al rodamiento lineal Radial mediante el tornillo de ajuste hasta que pueda introducirse fácilmente en el taladro de la carcasa. El taladro del anillo de montaje debe ser aprox. 0,5 mm más grande que el diámetro exterior "D" del rodamiento lineal Radial.

1) Referencias anillo de montaje: R0940 0... 00

Diámetro de eje d

Después de introducirlo, orientar la abertura del rodamiento lineal Radial según la abertura de la carcasa y soltar el anillo de montaje.

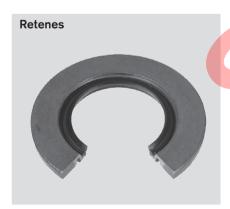
Introducir a presión el rodamiento lineal Radial premontado en la carcasa con una prensa.

Alternativamente, el rodamiento lineal Radial premontado puede introducirse a presión con un dispositivo de extracción. La pieza de presión debe estar alojada en la barra de presión con un cojinete de bolas (flecha). De no ser así, debe haber un cojinete axial de la barra de presión delante con el fin de evitar la rotación del rodamiento lineal Radial en la carcasa por efecto de los pares de giro que se producen.

Observaciones

- En caso de que las aberturas del rodamiento lineal Radial y la carcasa no coincidan en estado montado:
 - extraer a presión el rodamiento lineal Radial (prensa o dispositivo de extracción);
 - colocar anillo de montaje;
 - corregir la posición de la abertura;
 - continuar con el montaje de acuerdo con las figuras.
- Los extremos de los ejes deben estar achaflanados.
- El rodamiento lineal Radial no debe inclinarse al colocarlo en el eje.
- Debe evitarse la torsión entre el eje y el rodamiento lineal Radial.
- Al montar retenes adelantados, deben alinearse según el rodamiento lineal Radial e introducirse a presión con una prensa o un dispositivo de extracción.

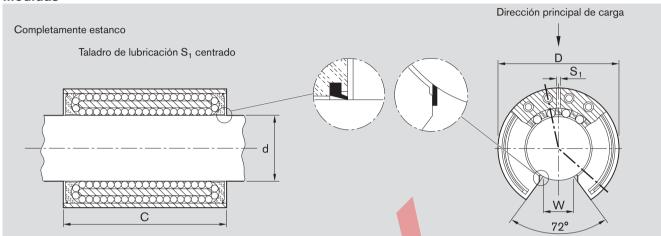
Rodamientos lineales Radiales


Rodamientos lineales Radiales, R0678 sin retén o completamente estancos

Construcción

- Casquillo templado y rectificado
- Jaula de PA reforzada
- Bolas de acero de rodamientos
- Dos anillos de seguridad
- Sin retén
- Completamente estanco
- Retenes adicionales
- Relubricables

Eje	Referencia		Peso
Ød	sin retén	completamente estanco	
(mm)	KBR	KBRVD	(kg)
30	R0678 030 00	R0678 230 45	0,7
40	R0678 040 00	R0678 240 45	1,4
50	R0678 050 00	R0678 2 <mark>50 4</mark> 5	2,5
60	R0678 060 00	R0678 260 45	4,9
80	R0678 080 00	R0678 280 45	10,4

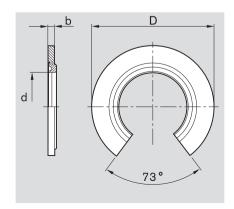


Eje	Referencia	Peso
Ød	Retenes	
(mm)		(kg)
30	R1331 930 00 ¹⁾	0,050
40	R1 <mark>3</mark> 31 940 00 ¹⁾	0,075
50	R1331 950 00 ¹⁾	0,145
60	R1331 960 00 ¹⁾	0,230
80	R1331 980 00 ¹⁾	0,400

¹⁾ Consultar plazos de entrega

Ejemplo de aclaración de abreviación

КВ	R	30	VD
Rodamiento lineal	Radial	Ø 30	Completamente estanco


Medidas	(mm)				Hileras de bolas	Juego radia	ι (μm)		Caps. de carga ³⁾	(N)
Ød	D	C h11	W ¹⁾	S1		h6/H6	h6/JS6 ²	h6/K6 ²⁾	din. C	
30	60	75	14,0	3	12	+21 -10	+12 -20		8500	9520
40	75	100	19,5	3	12	+23 -13	+13 -22		13900	16000
50	90	125	24,5	3	12	+25 -12	+14 -23		20800	24400
60	110	150	29,0	4	12	+26 -15	+15 -26		29500	34100
80	145	200	39,0	4	12	+29 -15	+16 -27		54800	61500

- 1) Medida mínima referida al diámetro de eje "d".
- 2) Tener en cuenta la disminución de la duración de vida por precarga elevada (véanse tablas TB-06-052-05 y -06).
- 3) Las capacidades de carga son válidas para la dirección principal de carga $\rho = 0^{\circ}$.
- El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.
- Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Retenes

Construcción

- Anillo de sujeción de acero
- Retén de elastómero

Medidas (mm)										
Ød	D ⁴⁾	b								
30	60	5								
40	75	5								
50	90	7								
60	110	7								
80	145	7								

4) El diámetro exterior D está fabricado con un sobredimensionamiento de aprox. 0,1 mm. No se requiere de una fijación adicional, salvo aplicaciones con vibraciones o altas aceleraciones.

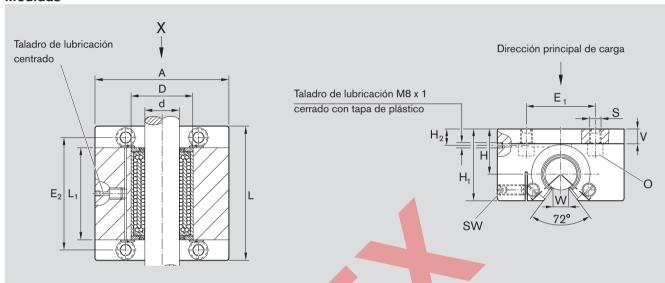
Sets lineales con rodamientos lineales Radiales

Sets lineales, R1076 abiertos, ajustables

Construcción

- Carcasa de precisión (acero)
- Rodamientos lineales Radiales
- Dos retenes
- Relubricables

En combinación con ejes de acero de precisión y soportes del eje, con estos sets lineales pueden realizarse guiados con capacidades de carga y rigidez muy elevadas.


-	Referencia con dos retenes LSREDD	Peso (kg)
30	R1076 230 20 ¹⁾	6,1
40	R1076 240 20 ¹⁾	11,8
50	R1076 250 20 ¹⁾	19,7
60	R1076 260 20 ¹⁾	38,4
80	R1076 280 20 1)	76,1

¹⁾ Consultar plazos de entrega

Ejemplo de aclaración de abreviación

LS	R	E	30	DD
Set lineal	Radial, abierto	ajustable	Ø 30	Con 2 juntas

Encontrará más información acerca de la abreviación en Página 138.

Medi	das (r	nm)								•					Juego radial (_µ m)	Tolerancia para medida	/- ··	e carga ⁵⁾
Ød	D	A ¹⁾	L ¹⁾	L ₁ +0,5	Н	H ₁ ¹⁾	H ₂	V ¹⁾	E ₁	E ₂	S H13	W ²⁾	O ₃₎	SW		H ⁴⁾ (μm)	din. C	estát. C ₀
30	60	140	130	84	48	75	18,0	16	75	108	11,0	14,0	M10x30	5	(límite Io	+15 -5	8500	9520
40	75	170	160	109	60	94	22,5	20	90	135	13,5	19,5	M12x40	6	eje h5 (l sin juego	+17 -4	13900	16000
50	90	200	200	138	70	110	25,0	23	110	170	17,5	24,5	M16x50	8	un og	+18 -5	20800	24400
60	110	240	240	163	85	135	30,0	28	130	200	22,0	29,0	M20x60	10		+23 -4	29500	34100
80	145	310	310	213	110	175	37,5	35	170	260	26	39,0	M24x80	12	de fábri inferior)	+22 -5	54800	61500

- 1) Tolerancia js16.
- 2) Medida mínima referida al diámetro de eje "d".
- 3) Tornillos cilíndricos ISO 4762-8.8, recomendación válida solo para el enroscado en rosca de acero o fundición.
- 4) En estado fijo (con tornillos apretados) referido a medida nominal de eje d.
- 5) Las capacidades de carga son válidas para la dirección principal de carga $\rho=0^{\circ}$.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Ejes de acero montados con soportes de eje para rodamientos lineales Radiales

R1018 Eje de acero montado con soporte de eje

Material

- Soporte de eje: Acero

Eje	Referencia	Peso
Ød		
(mm)		(kg/m)
30	R1018 030 1)	20,5
40	R1018 040 1)	31,0
50	R1018 050 1)	50,0
60	R1018 060 1)	70,0
80	R1018 080 1)	121,0

Ejes:

00 = acero bonificado h6

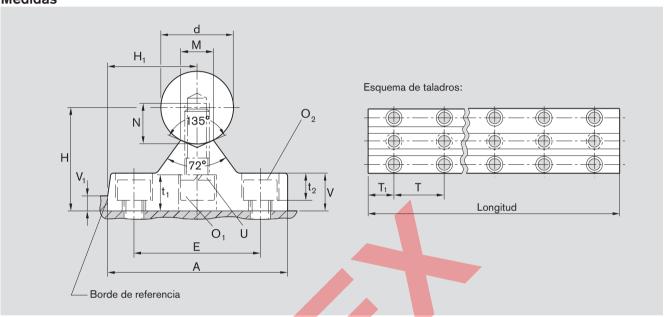
30 = acero anticorrosivo h6

60 = acero bonificado cromado h6

1) Consultar plazos de entrega

Ejemplo de pedido:

Diámetro de eje 30 mm, h6, acero bonificado, longitud 1200 mm, montado con soporte de eje R1052 130 00 se pide como:


R1018 030 00 / 1200 mm.

R1052 Soportes de eje, longitud (mm) $600^{-0.5}_{-1.5}$

Eje	Referencia	Peso
Ød		
(mm)		(kg)
30	R1052 130 00 ¹⁾	9,0
40	R1052 140 00 ¹⁾	12,7
50	R1052 150 00 ¹⁾	20,7
60	R1052 160 00 ¹⁾	29,0
80	R1052 180 00 ¹⁾	48,9

¹⁾ Consultar plazos de entrega

ıs (mm)													
Α	H ¹⁾	H ₁	V	V ₁ ²⁾	M	E	T	t ₁	t ₂	N	O ₁	O ₂	U
	js7	js7			-0,5			Y			ISO 4762-8.8	ISO 4762-8.8	DIN7980 ³⁾
80	50	40,0	19	7,0	13	55	60	22,0	13,5	17	M10x30	M10	10
100	60	50,0	22	8,5	18	70	75	22,0	16,0	21	M12x40	M12	12
125	75	62,5	30	9,0	23	90	100	28,0	21,0	28	M16x50	M16	16
150	90	75,0	34	13,0	27	110	120	34,0	25,5	32	M20x60	M20	20
200	115	100,0	42	18,0	37	140	150	38,5	30,5	40	M24x80	M24	24
	80 100 125 150	A H ¹⁾ js7 80 50 100 60 125 75 150 90	A H¹¹ H₁ js7 H₁ js7 80 50 40,0 100 60 50,0 125 75 62,5 150 90 75,0	A H¹¹ js7 H¹ js7 V 80 50 40,0 19 100 60 50,0 22 125 75 62,5 30 150 90 75,0 34	A H¹) js7 H₁ js7 V js7 80 50 40,0 19 7,0 100 60 50,0 22 8,5 125 75 62,5 30 9,0 150 90 75,0 34 13,0	A H¹¹ H₁ V V₁²² M is7 js7 -0,5 80 50 40,0 19 7,0 13 100 60 50,0 22 8,5 18 125 75 62,5 30 9,0 23 150 90 75,0 34 13,0 27	A H¹¹¹ H₁ V V₁²² M E 80 50 40,0 19 7,0 13 55 100 60 50,0 22 8,5 18 70 125 75 62,5 30 9,0 23 90 150 90 75,0 34 13,0 27 110	A H¹¹ js7 H₁ js7 V V₁²¹ H₂² M E T 80 50 40,0 19 7,0 13 55 60 100 60 50,0 22 8,5 18 70 75 125 75 62,5 30 9,0 23 90 100 150 90 75,0 34 13,0 27 110 120	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- 1) Medido con eje de prueba, medida nominal "d" y longitud de aprox. 50 mm.
- 2) Recomendación de construcción: realizar lado contrario sin borde de referencia (V₁) y alinear en paralelo sobre los ejes.
- 3) DIN 7980 retirado. Arandelas elásticas disponibles en su comercio.

Sets lineales con rodamientos lineales Radiales

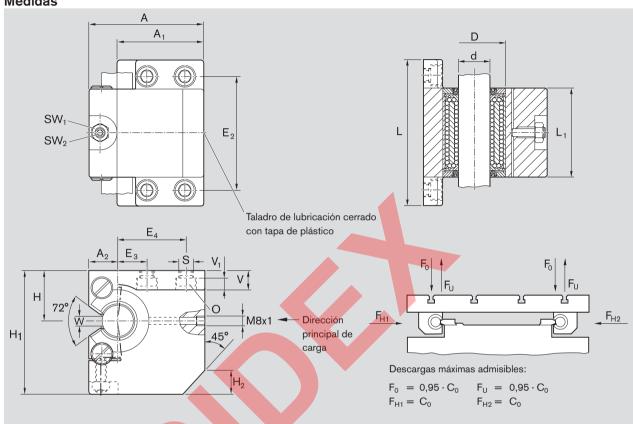
Sets lineales, R1078 con abertura lateral, ajustables

Construcción

- Carcasa de precisión con abertura lateral (acero)
- Rodamientos lineales Radiales
- Dos retenes
- Relubricables

Si la carga actúa sobre los rodamientos lineales abiertos en dirección contraria a la de apertura, debe contarse con reducciones considerables de la capacidad de carga.

Este set lineal permite el montaje lateral del rodamiento lineal Radial y, con ello, garantiza el aprovechamiento total de capacidades de carga elevadas.


Eje	Referencia con dos retenes	Peso
Ød	LSRSEDD	
(mm)		(kg)
30	R1078 230 20 ¹⁾	7,8
40	R1078 240 20 ¹⁾	15,0
50	R1078 250 20 ¹⁾	27,5
60	R1078 260 20 1)	48,0
80	R1078 280 20 ¹⁾	105,0

¹⁾ Consultar plazos de entrega

Ejemplo de aclaración de abreviación

LS	RS	E	30	DD
Set lineal	Radial, con abertura lateral	ajustable	Ø 30	Con 2 juntas

Encontrará más información acerca de la abreviación en Página 138.

Medic	das (mm	1)																	
Ød	D	A1)	A11)	A21)	L ¹⁾	L1	H2 ¹⁾	Н	H1 ¹⁾	V1)	V1	E2	E3	E4	S	W ²⁾	SW1	SW2	O ₃₎
						+0,5													
30	60	110	83	27	140	84	30	48	118	18	11,0	110	28	65	13,5	14,0	17	5	M12x30
40	75	135	100	35	180	109	35	60	145	25	15,0	142	40	76	17,5	19,5	19	6	M16x40
50	90	165	125	40	230	138	45	70	170	30	17,5	180	50	95	22,0	24,5	24	8	M20x50
60	110	200	150	50	275	163	55	85	205	35	20,5	215	60	115	26,0	29,0	30	10	M24x60
80	145	265	200	65	345	213	70	110	265	45	25,5	275	75	155	33,0	39,0	36	12	M30x80

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Eje	Juego ra-	Tolerancia	Caps. de carg	ja ⁵⁾ (N)
Ød	dial(μm)	para medida	din. C	estát. C ₀
		H ⁴⁾ (μm)		
	<u>i</u> .	+15	8500	9520
30	(límite Jo	-5	6500	9520
	ger Jeg	+17	10000	10000
40	in ju	-4	13900	16000
	ur o	+18	00000	0.4400
50	on t	-5	20800	24400
	a co	+23	29500	34100
60	oric or) a	-4	29500	34100
	de fábrica con un eje h5 (li inferior) ajustado sin juego	+22	E4900	61500
80	de	-5	54800	61500

- 1) Tolerancia js16.
- 2) Medida mínima referida al diámetro de eje d.
- Tornillos cilíndricos DIN 6912-8.8, recomendación válida solo para el racor en rosca de acero o fundición.
- 4) En estado fijo (con tornillos apretados) referido a medida nominal de eje d.
- Las capacidades de carga indicadas son válidas para la dirección principal de carga según la flecha F_{H1} o F_{H2}.

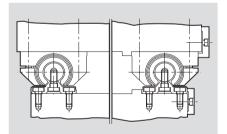
Sets Radiales Compactos

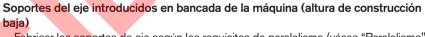
Datos técnicos/montaje

Fricción, velocidad, aceleración, temperatura de servicio, influencia de la dirección de carga en la capacidad de carga y la rigidez Como base para la construcción pueden utilizarse los valores válidos para el rodamiento lineal Radial.

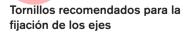
Fricción de juntas sin carga radial

Eje Ød	Fuerza de arranque	Fuerza de ficción
(mm)	(N) aprox.	(N) aprox.
30	24	12
40	32	16
50	40	20
60	48	24
80	60	30

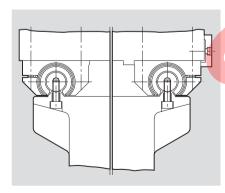

Montaje

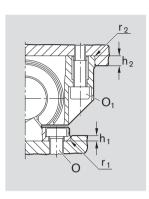

Antes del montaje

Cerciorarse de que la superficie de apoyo del set Radial Compacto es plana. Las irregularidades afectan al juego radial. Los ejes deben estar achaflanados. Al colocar los sets Radiales Compactos en el eje, no inclinarlos.

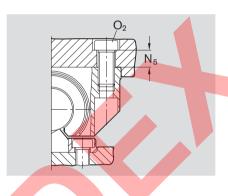


véase el capítulo "Ejes de acero con soportes de eje montados".

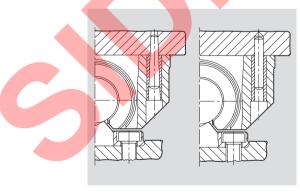



- Fabricar los soportes de eje según los requisitos de paralelismo (véase "Paralelismo",
 Datos técnicos generales e instrucciones de montaje).
- Enroscar los ejes.
- Montar los sets Radiales Compactos (véase el capítulo "Ejes de acero con soportes del eje montados").

Ød (mm)	ISO 4762-8.8
30	M10x30
40	M12x40
50	M16x50
60	M20x60
80	M24x80



Radios de esquinas, bordes de referencia y atornillado


Med	lidas (ı	mm)						Par de apriete (Nm)
Ød	r₁ máx	h ₁	r ₂ máx	h ₂	O DIN 7984-8.8	O ₁ ISO 4762-8.8	0	O ₁
	IIIax		IIIax		DIN 7304-0.0	130 47 02-0.0		
30	0,6	6	0,6	6	M10x20	M10x40	32	46
40	0,6	6	0,6	6	M12x25	M12x45	56	80
50	1,2	8	0,6	8	M16x30	M16x60	136	195
60	1,2	8	0,6	16	M20x40	M20x80	270	385
80	1,2	10	0,6	20	M24x50	M24x100	460	660

Atornillado del lado del suelo de los sets Radiales Compactos

Medic			Par de
Ød	N ₅	O ₂	apriete
		ISO 4762-8.8	(Nm)
30	17	M12x30	55
40	24	M16x40	100
50	28	M20x50	240
60	30	M27x60	500
80	45	M30x80	800

Sujeción con pasador

	Pasador cónico/pasador cilíndrico
(mm)	(endurecido)
30	8x60
40	10x80
50	12x100
60	14x120
80	16x160

Juego radial

Los sets Radiales Compactos vienen ajustados de fábrica sin juego con un eje h5 (límite inferior). Si se desea una **precarga**, debe procederse como sigue:

- calcular el diámetro del eje de guiado,
- determinar e introducir un eje de ajuste más pequeño (la reducción del tamaño debe ser equivalente a la precarga deseada),
- cierre mediante el tornillo de ajuste, hasta que al girar el eje de ajuste se perciba cierta resistencia.

Indicaciones de lubricación

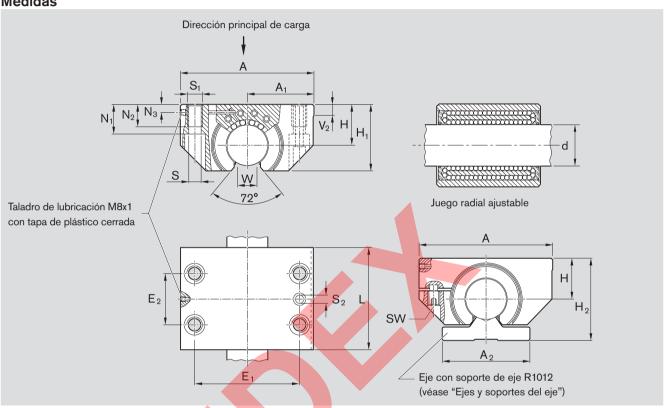
Lubricar solo con el eje introducido, hasta que salga lubricante.

Sets Radiales Compactos

Sets Radiales Compactos, R1613 abiertos, ajustables

Construcción

- Soporte con cojinete fijo y pie de acero de rodamientos templado y rectificado
- Jaula de PA reforzada
- Bolas de acero de rodamientos
- Dos anillos de seguridad
- Completamente estanco (con retenes integrados y juntas longitudinales)


Eje Ø d	Referencias	4	Peso
(mm)	KB-RCS-EVD		(kg)
30	R1613 300 00		1,75
40	R1613 400 00		3,50
	R1613 500 00		7,10
60	R1613 600 00 1)		11,90
80	R1613 800 00 1)		29,60
		_	

¹⁾ Consultar plazos de entrega

Ejemplo de aclaración de abreviación

KB	RCS	E	30	VD
Rodamiento lineal	Set Radial Compacto	ajustable	Ø 30	Completamente estanco

Encontrará más información acerca de la abreviación en Página 138.

Med	lidas	(mm)		,															Juego radial (µm)	Caps. de (N)	carga ⁴⁾
Ød	Α	A ₁ ±0,008	A ₂	H ¹⁾ ±0,008	H ₁	H ₂	L	E ₁	E ₂	S	S ₁	S ₂ ²⁾	N ₁	N ₂	N ₃	V ₂	W ³⁾	SW		din. C	estát. C ₀
30	100	50,0	68	32	53,0	65	75	76	40	10,5	M12	7,7	21	15	9	6	14,0	5	(límite Io	8500	9520
40	125	62,5	85	40	66,0	80	100	94	50	14,0	M16	9,7	27	18	11	6	19,5	6	eje h5 (II sin juego	13900	16000
50	160	80,0	105	50	81,5	100	125	122	65	17,5	M20	11,7	35	24	12	8	24,5	8	ca con un e ajustado si	20800	24400
60	190	95,0	130	60	97,0	120	150	150	75	22,0	M27	13,7	42	32	13	16	29,0	10	nrica α	29500	34100
80	260	130,0	170	80	130,0	160	200	205	100	26,0	M30	15,7	57	36	15	16	39,0	12	de fábrica inferior) aji	54800	61500

- 1) En estado fijo (con tornillos apretados) referido a medida nominal de eje d.
- 2) Taladro preparado para pasador.
- 3) Medida mínima referida al diámetro de eje d.
- 4) Las capacidades de carga son válidas para la dirección principal de carga $\rho = 0^{\circ}$.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Ejes de acero montados con soporte de eje para sets Radiales Compactos

R1012 Ejes de acero montados con soporte de eje

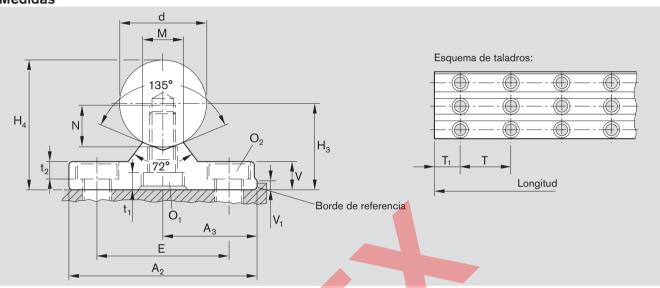
Eje	Referencia	Peso
Ød		
(mm)		(kg/m)
30	R1012 030	12,3
40	R1012 040	19,6
50	R1012 050	31,0
60	R1012 060 1)	45,6
80	R1012 080 1)	79,2

Ejes:

00 = acero bonificado h6

30 = acero anticorrosivo h6

60 = acero bonificado cromado h6


Material

- Soporte de eje: Acero

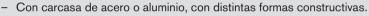
1) Consultar plazos de entrega

Ejemplo de pedido:

Diámetro de eje 40 mm, h6, acero bonificado, longitud 1500 mm, montado con soporte de ejes, se pide como: R1012 040 00 / 1500 mm.

Medidas (mm)												Tolerancias de una clasificación (μm)				
Ød	A ₂	A ₃ ±0,02	H ₃ ¹⁾	H ₄	V	V ₁	M -0,5	E	O ₁ DIN6912-8.8	t ₁	N	O ₂ DIN7984-8.8	t ₂	Т	H ₃ ²⁾	H ₄ ³⁾
30	68	34,0	33	48	11	6	13	46	M10x25	9,0	17	M10	6,8	60	20 ⁴⁾	29
40	85	42,5	40	60	13	6	18	58	M12x30	10,0	21	M12	8,4	75	204)	31
50	105	52,5	50	75	17	8	23	74	M16x40	10,8	28	M16	10,5	100	20 ⁴⁾	31
60	130	65,0	60	90	20	8	27	90	M20x40	16,0	32	M20	12,5	120	20	33
80	170	85,0	80	120	26	10	37	120	M24x60	16,0	40	M24	16,0	150	20	33

- 1) Tolerancia: $\pm 0,02$ mm; se suministra con una altura clasificada de 20 μ m.
- 2) Medido con eje de prueba, medida nominal "d" y longitud de aprox. 50 mm.
- 3) Inclusive tolerancia de eje (calculado estáticamente).
- 4) Bajo consulta hasta 1800 mm longitud con un paralelismo de 10 μ m



Rodamientos lineales Antigiro

Sinopsis del producto

-1----

- Las ventajas
- Para guiados antigiro rígidos sin soporte, con un solo eje.
- Con 1, 2 o 4 ranuras guía, para transmisión de pares de giro.
- Amplia selección de formas constructivas.
- Rodamientos lineales Antigiro con tornillo de ajuste, ajustados de fábrica sin juego.
- Ejes apropiados con ranuras guía rectificadas.
- Ejes mecanizados según las preferencias del cliente.
- Con retenes aparte, o sin retenes.
- Diversas formas de brida.

Rodamiento lineal Antigiro tipo 1, una ranura guía

Rodamiento lineal Antigiro tipo 2, dos ranuras guía

Rodamiento lineal Antigiro Compacto

Aclaración de la abreviación

Ejemplo de rodamiento lineal:

Rodamiento lineal Antigiro con eje KBDRC2-20-WV-X90-1200

Definición de las abreviaciones | KB | DR | C | 2 | 20 | WV-X90 | 1200 |

Tipo	Rodamiento lineal	= KB		1200	= Longitud estándar según tabla	Longitud
Serie	Par de giro	= DR		Especial	I = Mecanizar eje según plano	del eje
	Compacto	= C		K	= Longitud del eje según indicación (corto)	(mm)
Rodadura	1 ranura guía	= 1		X90	Con eje anticorrosivo X90	Eje
	2 ranura guía	= 2		WO	= Con eje hueco	
Diámetro de eje		= 20		WV	= Con eje	

Carcasa de aluminio

Tipo 1: una ranura guía

Tipo 2: dos ranuras guía

Carcasa de acero

R1096 5... Página 174

Tipo 1: una ranura guía

Tipo 2: dos ranuras guía

Montaje

Los sets lineales se suministran montados y ajustados sin juego. Si se retira el eje, deberán aflojarse los tornillos de ajuste y deberá ajustarse nuevamente el rodamiento lineal Antigiro.

Ejemplo de set lineal:

Set lineal con rodamiento lineal Antigiro LSHDR1T-20-WV-X90-1200

Definición de las ab	reviaciones			1 9	н	DΒ	1	т	20	WV-X90	1200	ı
Tipo	Set lineal	_	LS	LJ		DI	١.	•	20	WW X30	1200	1
Material	Acero	=			J							Е
(carcasa)	Aluminio	=	Α									k
Forma constructiva	Forma de castillo	=	Н		-							>
	Brida	=	F									١
Serie	Rodamiento lineal Antigiro	=	DR			•						١
Rodadura	1 ranura guía	=	1									
	2 ranura guía	=	2									
Carcasa	Normal	=						-				
	Tandem	=	Τ									
Diámetro de eje		=	20						•			

1200 =		=	Longitud estándar según tabla	Longitud del
Especial=			Mecanizar eje según plano	eje (mm)
K =		=	Longitud del eje según	
			indicación (corto)	
	X90	=	Con eje anticorrosivo X90	Eje
	WO	=	Con eje hueco	
	WV	=	Con eje	

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

Rodamientos lineales Antigiro

Sinopsis del producto

Las ventajas

- Para guiados antigiro rígidos sin soporte, con un solo eje.
- Con 4 ranuras guía para transmisión de pares de giro
- Ejes apropiados con ranuras guía rectificadas.
- Ejes mecanizados según las preferencias del cliente.
- Diversas formas de brida.

Rodamiento lineal Antigiro con cuatro ranuras guía

Rodamiento lineal Antigiro, brida con cuatro ranuras guía

Rodamiento lineal Antigiro, brida miniatura con cuatro ranuras guía

Rodamiento lineal Antigiro, brida rotativa con cuatro ranuras guía

Montaje

En los rodamientos lineales Antigiro con cuatro ranuras guía, los rodamientos y los ejes se suministran por separado. Al introducir el eje, alinear las pistas de rodadura y no inclinarlas.

Junta

Tamaño¹⁾

Ejemplo de rodamiento lineal: Rodamiento lineal Antigiro KBDR4-H-20DD

Definición de	KB	DR	4	Н	20	D		
Tipo	Rodamiento lineal	= KB						
Serie	Par de giro	= DR						

	про	Rodamiento lineal	= KB		
	Serie	Par de giro	= DR		
Rodadura		4 ranura guía	= 4		
		Forma de castillo	= H		
		Brida	F		
		Brida miniatura	= FM		
		con rodamiento de rotación	= LR		

¹⁾ El diámetro de eje difiere (véase tabla de medidas)

Eje de acero de precisión con cuatro ranuras guía

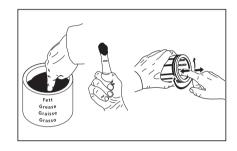
Ejemplo de eje: **Eje, rodamiento lineal Antigiro**WVDR4-20-1200

Definición de las abreviaciones					WV	DR	4	20	1200
Tipo		Eje		= WV					
		Eje hueco		= WO					
Serie		Par de gir	0	= DR					
Rodadura		4 ranura g	uía	= 4			'		
Tamaño ¹⁾				= 20					
Longitud del eje (mm)				= 1200					

= 2 juntas

= 1 junta = 20

1) El diámetro de eje difiere (véase tabla de medidas)


Rodamientos lineales Antigiro

Datos técnicos

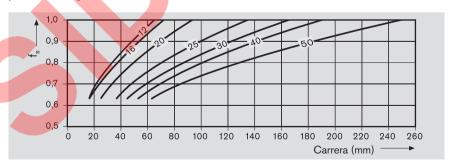
Lubricación inicial

A los rodamientos lineales Antigiro no se les aplica una lubricación inicial.
Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 21.

Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.

Tenga también en cuenta las bases técnicas generales, así como las indicaciones de lubricación y de montaje.

Velocidad $v_{max} = 3 \text{ m/s}$


Aceleración $a_{max} = 150 \text{ m/s}^2$

Temperatura de servicio De -10 °C a 80 °C

Disminución de capacidad de carga en carrera corta

En caso de carrera corta, la duración de vida de los ejes es menor que la de los rodamientos lineales Antigiro.

Por tanto, las capacidades de carga C indicadas en las tablas deben multiplicarse por el factor f_s.

(N) (N)

Capacidad de carga y duración de vida

Si la carga radial y el par de giro actúan al mismo tiempo, hay que calcular la carga total equivalente para la duración de vida.

$$F_{comb} = F_{res} + C \cdot \frac{M_x}{M_t}$$

$$E = \left(\frac{C}{F_{comb}}\right)^3 \cdot 10^5 \, \text{m}$$

$$F_{comb} = carga combinada equivalente consistence are carga radial resultante consistence consistence are carga radial resultante consistence consistence are carga combinada equivalente consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga consistence carga c$$

= capacidad de carga dinámica (N) = momento de torsión dinámico (Nm)

en torno al eje x = momento de torsión dinámico (Nm)

 duración de vida nominal (m)

Si la carga es solo de par de giro, la duración de vida se calcula como sigue:

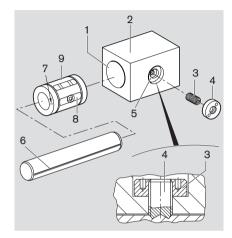
$$\begin{aligned} M_{m} &= \sqrt[3]{|M_{1}|^{3} \cdot \frac{q_{s1}}{100 \%} + |M_{2}|^{3} \cdot \frac{q_{s2}}{100 \%} + ... + |M_{n}|^{3} \cdot \frac{q_{sn}}{100 \%}} \\ L &= \left(\frac{M_{t}}{M_{m}}\right)^{3} \cdot 10^{5} \text{ m} \end{aligned}$$

= recorridos parciales para M₁, M₂, ... M_n (%) $q_1, q_2 ... q_n$ = pares individuales escalonados en las fases $M_1, M_2 \dots M_n$ (Nm) (Nm) M, = momento de torsión dinámico (Nm) M_{m} par de giro dinámico equivalente (Nm) número de fases (-)duración de vida nominal (m)

Rectitud del eje

Montaje sin vuelcos

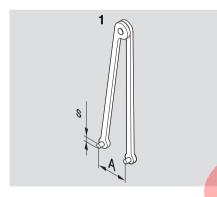
Hasta 1200 mm de longitud: 0,1 mm Con 2000 mm de longitud: 0,2 mm


Para un guiado sin vuelcos se deberán montar dos rodamientos lineales Antigiro. En los sets lineales recomendamos utilizar la ejecución Tandem (con 2 rodamientos lineales Antigiro).

Rodamientos lineales Antigiro

Montaje de los rodamientos lineales Antigiro

Montaje


Los sets lineales se suministran montados y ajustados sin juego. Si se retira el eje, deberán aflojarse los tornillos de ajuste y deberá ajustarse nuevamente el rodamiento lineal Antigiro.

- Achaflanar el taladro (1) de la carcasa (2) y limpiarlo.
- Lubricar el tornillo de ajuste (3).
- Verificar que la contratuerca (4) gira libremente sobre el tornillo de ajuste (3).
- Verificar que el tornillo de ajuste (3) gira libremente sobre la rosca (5).
 Si es necesario, quitar rebabas de la rosca.
- · Retirar el envoltorio del rodamiento lineal.

A No golpear con un martillo sobre el rodamiento lineal.

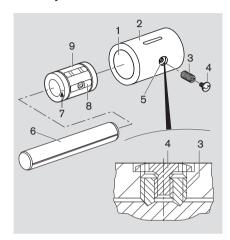
- Posicionar a mano el rodamiento lineal (9) dentro de la carcasa (2).
- Alinear el inserto de acero avellanado (8) con la rosca (5) de la carcasa.
- Alinear una ranura guía (6) según la marca (7) del rodamiento lineal.
- Introducir el eje sin inclinarlo.

Ajustar los tornillos de ajuste

- Enroscar el tornillo de ajuste hasta que se perciba una ligera resistencia.
- Mover el eje adelante y atrás. Al mismo tiempo, intentar moverlo en ambas direcciones. Al hacerlo, apretar el tornillo de ajuste con un destornillador hexagonal.
- En el tipo 1 (una ranura guía), apretar el tornillo de ajuste con M_{GA}.
- En el tipo 2 (dos ranuras guías), apretar un tornillo de ajuste con 0,5 · M_{GA}, luego apretar el tornillo opuesto con M_{GA}.
- Asegurar el tornillo de ajuste con la contratuerca. Utilizar una llave de espiga (1).
 Asegurarse de que el tornillo de ajuste no gire al apretar la contratuerca. Par de apriete = M_{GK}.
- Después del montaje debe haber una fuerza de fricción F_R. Si esta fuerza difiere de los valores de la tabla se deberá realizar nuevamente el ajuste.
- · iNo extraer más el eje!

Eje	Llave de espiga (1) (mn	n)	Par de apriete (Ncm)1)		Fuerza de fricción R aprox.		
Ød			Tornillo de ajuste	Contratuerca	(un rodamiento lineal)		
(mm)	s	A	M_{GA}	M _{GK}	(N)		
12	2,5	10,0	8	400	1,5		
16	2,5	10,0	11	400	2,0		
20	3,0	15,0	30	1500	3,0		
25	3,0	15,0	45	1500	4,5		
30	3,0	19,5	70	2000	6,0		
40	3,0	19,5	100	2000	8,0		
50	3,0	25,0	180	3000	12,0		

¹⁾ Par de apriete en caso de factor de fricción 0,125


Montaje de retén

- Colocar el retén sobre el eje haciendo coincidir el labio con la ranura del eje.
- Introducir el retén en el taladro de alojamiento presionando.

Con cada retén montado aumenta la fuerza de fricción en el valor F_R. Con el montaje de dos retenes aumenta aprox. el triple del valor de la tablas.

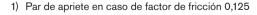
Montaje de los rodamientos lineales Antigiro Compactos

Montaje

Los sets lineales se suministran montados y ajustados sin juego. Si se retira el eje, deberán aflojarse los tornillos de ajuste y deberá ajustarse nuevamente el rodamiento lineal Antigiro.

- Achaflanar el taladro (1) de la carcasa (2) y limpiarlo.
- Lubricar el tornillo de ajuste (3) y la contratuerca (4).
- Verificar que la contratuerca (4) gira libremente en el tornillo de ajuste (3).
- Verificar que el tornillo de ajuste (3) gira libremente sobre la rosca (5). Si es necesario, quitar rebabas de la rosca.
- · Retirar el envoltorio del rodamiento lineal.

⚠ No golpear con un martillo sobre el rodamiento lineal.


- Posicionar a mano el rodamiento lineal (9) dentro de la carcasa (2).
- Alinear el inserto de acero avellanado (8) con la rosca (5) de la carcasa.
- Alinear una ranura guía (6) según la marca (7) del rodamiento lineal.
- Introducir el eje sin inclinarlo.

Ajustar los tornillos de ajuste

- Enroscar el tornillo de ajuste hasta que se perciba una ligera resistencia.
- Mover el eje adelante y atrás. Al mismo tiempo, intentar moverlo en ambas direcciones. Al hacerlo, apretar el tornillo de ajuste con un destornillador (1).
- En los diámetros de eje 12 y 16, apretar el tornillo de ajuste con M_{GA}.
- En los diámetros de eje 20 a 50, apretar primero un tornillo de ajuste con 0,5 · M_{GA}, y a continuación el otro con M_{GA}.
- Atornillar la contratuerca en el tornillo de ajuste con una llave de espiga (2) y apretar con el par de apriete M_{GK}.
- Después del montaje debe haber una fuerza de fricción F_R. Si esta fuerza difiere de los valores de la tabla se deberá realizar nuevamente el ajuste.
- · iNo extraer más el eje!

Eje	Destornilla	dor (1)	Llave de espiga (2)		Par de apriete (Ncm)1)	Fuerza de fricción R		
Ød		(mm)		(mm)	Tornillo de ajuste	Contratuerca	aprox.		
							(un rodamiento lineal)		
(mm)	а	b	s	A	M _{GA}	M _{GK}	(N)		
12	0,8	5	1,5	5,5	8	110	1,5		
16	0,8	5	1,5	5,5	11	110	2,0		
20	1,0	8	2,0	8,0	30	180	3,8		
25	1,0	8	2,0	8,0	45	380	5,6		
30	1,2	10	2,5	10,0	70	800	7,5		
40	1,2	10	2,5	10,0	100	800	10,0		
50	1,6	14	3,0	13,0	180	1300	15,0		

Montaje de retén

- Colocar el retén sobre el eje haciendo coincidir el labio con la ranura del eje.
- Introducir el retén en el taladro de alojamiento presionando.

Con cada retén montado aumenta la fuerza de fricción en el valor F_R . Con el montaje de dos retenes aumenta aprox. el triple del valor de la tablas.

Rodamientos lineales Antigiro

Rodamientos lineales Antigiro, R0696 0..

Tipo 1: una ranura guía

Rodamientos lineales Antigiro, R0696 3..

Tipo 2: dos ranuras guía

Construcción

- Jaula guía y casquillo exterior de PA o POM
- Insertos de acero templado

- Bolas de acero de rodamientos
- Eje de acero de precisión con ranura
- Tornillo de ajuste de acero templado
- Contratuerca de acero

Eje	Referencias del rodamien	Referencias del rodamiento lineal Antigiro con eje										
Ød	Longitud estándar según	Longitud del eje según	Eje mecanizado									
(mm)	tabla	indicación ¹⁾	según plano									
	KBDR1WV	KBDR1K	KBDR1SPECIAL									
12	R0696 012 80	R0696 012 89	R0696 012 86									
16	R0696 016 80	R0696 016 89	R0696 016 86									
20	R0696 020 80	R0696 020 89	R0696 020 86									
25	R0696 025 80	R0696 0 <mark>25 89</mark>	R0696 025 86									
30	R0696 030 80	R0696 0 <mark>30 8</mark> 9	R0696 030 86									
40	R0696 040 80	R0696 04 <mark>0 89</mark>	R0696 040 86									
50	R0696 050 80	R0696 050 89	R0696 050 86									

-85 Longitud del eje 900 mm 87 Longitud del eje 1200 mm 88 Longitud del eje 2000 mm

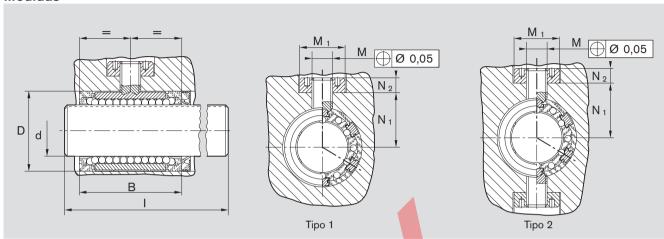
Referencias del rodamiento lineal Antigiro sin eje: R0696 0.. 00

Eje		Referencias del rodan	nient	to lineal Antigiro con eje					
Ø	d	Longitud estándar seg	gún	Longitud del eje según	Eje mecanizado según				
(mr	n)	tabla	į i	indicación ¹⁾	plano				
		KBDR2WV		KBDR2K	KBDR2SPECIAL				
-	20	R0696 320 80		R0696 320 89	R0696 320 86				
2	25	R0696 325 80		R0696 325 89	R0696 325 86				
	30	R0696 330 80		R0696 330 89	R0696 330 86				
	10	R0696 340 80		R0696 340 89	R0696 340 86				
ļ	50	R0696 350 80		R0696 350 89	R0696 350 86				

85 Longitud del eje 900 mm 87 Longitud del eje 1200 mm - 88 Longitud del eje 2000 mm

Referencias del rodamiento lineal Antigiro sin eje: R0696 3.. 00

1) En algunos casos, disponible también con eje hueco a partir del diámetro de eje 25: R0696 ... 69 o con eje de acero anticorrosivo según ISO 683-17 / EN 10088: R0696 ... 79.



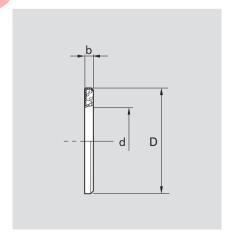
Eje	Referencia		Peso
Ød	Retenes		
(mm)	Tipo 1	Tipo 2	(g)
12	R1331 112 00	_	1,6
16	R1331 116 00	-	2,0
20	R1331 120 00	R1331 320 00	4,5
25	R1331 125 00	R1331 325 00	6,6
30	R1331 130 00	R1331 330 00	9,3
40	R1331 140 00	R1331 340 00	17,0
50	R1331 150 00	R1331 350 00	24.0

El retén se debe pedir por separado.

Ejemplo de aclaración de abreviación

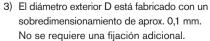
KB DR		2	25	WV	2000
Rodamiento lineal	Par de giro	2 ranura guía	Ø 25	Con eje	2000

Medida	as (mm)							Long	jitud	Momento d	de torsi	ón	Caps. de	carga ²⁾ (N)	Peso	
Ød								está	ndar		M _t (1	Vm)			Rodamiento	Eje
Tipo 1	Tipo 2	D ¹⁾	В	M	M ₁	N_1	N_2		I	Tipo 1	Tip	0 2	din. C	estát. C ₀	lineal	
					+0,1			(mm)							(kg)	(kg/m)
12	-	22	32	M6x0,5	14	15,5	5,0		400	2,0		-	640	420	0,026	0,89
16	-	26	36	M6x0,5	14	19,5	5,0		400	3,3		-	780	530	0,032	1,57
20	20	32	45	M10x1	22	21,5	8,0		500	7,5		12	1550	1050	0,064	2,45
25	25	40	58	M10x1	22	28,5	8,0		500	15,0		24	3030	2180	0,135	3,80
30	30	47	68	M12x1	26	32,0	9,5		600	23,0		37	3680	2790	0,210	5,50
40	40	62	80	M12x1	26	44,0	9,5	1	600	53,0		86	6320	4350	0,390	9,80
50	50	75	100	M16x1,5	34	52,0	12,5		600	103,0		167	9250	6470	0,680	15,30


- 1) Taladro de montaje recomendado: D^{JS7}.
- 2) Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de la carga no se pueden definir claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.


Retén Construcción

- Cápsula metálica, galvanizada
- Retén de elastómero

Medidas (mm)									
Ød	D ₃₎	b							
		+0,3							
12	22	3							
16	26	3							
20	32	4							
25	40	4							
30	47	5							
40	62	5							
50	75	6							

Rodamientos lineales Antigiro Compactos

Rodamientos lineales Antigiro Compactos, R0720

Construcción

- Jaula guía y casquillo exterior de PA o POM
- Insertos de acero templado
- Bolas de acero de rodamientos
- Eje de acero de precisión con ranura quía
- Tornillo de ajuste de acero templado
- Contratuerca de acero

- Una ranura guía en caso de diámetros de eje 12 y 16 mm
- Dos ranuras guía a partir del diámetro de eje 20 mm

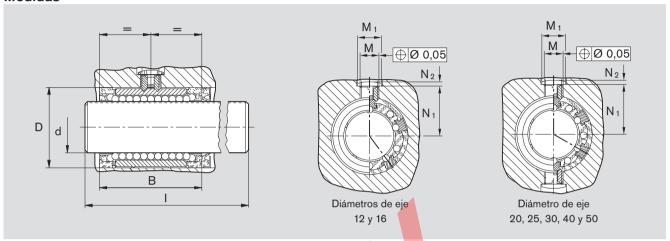
Eje	Referencias del rodamiento line <mark>al</mark> Antigiro con eje								
Ød	Longitud estándar según	Longitud del eje	Eje mecanizado según						
(mm)	tabla	según indicación1)	plano						
	KBDRCWV	KBDRCWV-K	KBDRCSPECIAL						
12	R0720 012 80	R0720 012 89	R0720 012 86						
16	R0720 016 80	R0720 016 89	R0720 016 86						
20	R0720 320 80	R0720 320 89	R0720 320 86						
25	R0720 325 80	R0720 <mark>325</mark> 89	R0720 325 86						
30	R0720 330 80	R0720 330 89	R0720 330 86						
40	R0720 340 80	R0720 340 89	R0720 340 86						
50	R0720 350 80	R0720 350 89	R0720 350 86						

85 Longitud del eje 900 mm 87 Longitud del eje 1200 mm 88 Longitud del eje 2000 mm

Referencias del rodamiento lineal Antigiro Compacto sin eje:

Diámetros de eje 12 y 16; R0720 0.. 00 Diámetros del eje 20 a 50: R0720 3.. 00

1) En algunos casos, disponible también con eje hueco a partir del diámetro de eje 25: R0720 ... 69 o con eje de acero anticorrosivo según ISO 683-17 / EN 10088: R0720 ... 79.



Eje	Referencias de	Peso
Ød	retenes	
(mm)		(g)
12	R1331 112 00	1,6
16	R1331 116 00	2,0
20	R1331 320 00	4,5
25	R1331 325 00	6,6
30	R1331 330 00	9,3
40	R1331 340 00	17,0
50	R1331 350 00	24,0

El retén se debe pedir por separado.

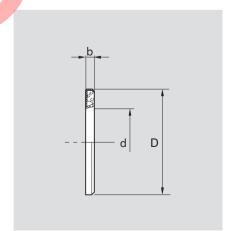
Ejemplo de aclaración de abreviación

KB	DR	С	2	20	WV	1200
Rodamiento lineal	Par de giro	Compacto	2 ranura guía	Ø 20	Con eje	1200 mm

Medidas (mm)					Longitud estándar	Longitud estándar Momento de torsión			carga ²⁾ (N)	Peso			
Ød	D ¹⁾	В	M	M ₁	N_1	N_2	1		M _t	din. C	estát. C ₀	Rodamiento lineal	Eje
					+0,1		(mm)		(Nm)			(kg)	(kg/m)
12	22	32	M6x0,5	8,0	14,4	1,3	400		2,0	640	420	0,026	0,89
16	26	36	M6x0,5	8,0	16,4	1,3	400		3,3	780	530	0,032	1,57
20	32	45	M10x1	12,5	21,8	1,9	500		12,0	1550	1050	0,071	2,45
25	40	58	M10x1	12,5	25,8	1,9	500		24,0	3030	2180	0,130	3,80
30	47	68	M12x1	15,0	29,7	2,5	600		37,0	3680	2790	0,200	5,50
40	62	80	M12x1	15,0	37,2	2,5	600		86,0	6320	4350	0,380	9,80
50	75	100	M16x1,5	20,0	46,7	3,0	600		167,0	9250	6470	0,620	15,30

¹⁾ Taladro de montaje recomendado: D^{K6}.

Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de carga no se puede definir claramente.


El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Retén

Construcción

- Cápsula metálica, galvanizada
- Retén de elastómero

Medidas (mm)							
Ød	D ₃₎	b					
		+0,3					
12	22	3					
16	26	3					
20	32	4					
25	40	4					
30	47	5					
40	62	5					
50	75	6					

sobredimensionamiento de aprox. 0,1 mm. No se requiere una fijación adicional.

Sets lineales con rodamientos lineales Antigiro, Carcasa de aluminio

Sets lineales, R1098 2.. Tipo 1: una ranura guía

Sets lineales, R1098 5.. Tipo 2: dos ranuras guía

Construcción

- Carcasa de precisión en construcción ligera (aluminio)
- Rodamiento lineal Antigiro
- Eje de acero de precisión con ranura guía
- Insertos de acero templados que transfieren el par de giro, ajustados de fábrica sin juego
- Retenes adicionales
- Ejecución sin vuelco: véanse sets lineales Tandem
- Relubricables

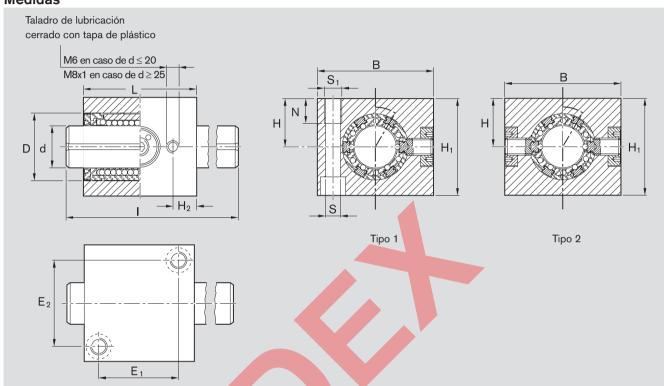
Eje	Referencias del set lineal Antigiro con eje								
Ød	Longitud estándar según	Longitud del eje según	Eje mecanizado según						
(mm)	tabla	indicación ¹⁾	plano						
	LSADR1WV	LSADR1WV-K	LSADR1SPECIAL						
12	R1098 212 80	R1098 212 89	R1098 212 86						
16	R1098 216 80	R1098 216 89	R1098 216 86						
20	R1098 220 80	R1098 220 89	R1098 220 86						
25	R1098 225 80	R1098 225 89	R1098 225 86						
30	R1098 230 80	R1098 230 89	R1098 230 86						
40	R1098 240 80	R1098 240 89	R1098 240 86						
50	R1098 250 80	R1098 250 89	R1098 250 86						
_	- or I								

- 85 Longitud del eje 900 mm
 - 87 Longitud del eje 1200 mm
 - 88 Longitud del eje 2000 mm

Tipo 2: dos ranuras guía

Eje	Referencias del set lineal Antigiro con eje						
Ød	Longitud estándar según	Longitud del eje según	Eje mecanizado según				
(mm)	tabla	indicación ¹⁾	plano				
	LSADR2WV	LSADR2WV-K	LSADR2SPECIAL				
20	R1098 520 80	R1098 520 89	R1098 520 86				
25	R1098 525 80	R1098 525 89	R1098 525 86				
30	R1098 530 80	R1098 530 89	R1098 530 86				
40	R1098 540 80	R1098 540 89	R1098 540 86				
50	R1098 550 80	R1098 550 89	R1098 550 86				

85 Longitud del eje 900 mm


87 Longitud del eje 1200 mm

88 Longitud del eje 2000 mm

En algunos casos, disponible también con eje hueco a partir del diámetro de eje
 R1098 ... 69 o con eje de acero anticorrosivo según ISO 683-17 / EN 10088: R1098 ... 79.

Ejemplo de aclaración de abreviación

LS	Α	DR	1	12	WV	1200
Set lineal	Aluminio	Par de giro	1 ranura guía	Ø 12	Con eje	1200 mm

Medic	las (mm)											Longitud	Mome	nto de	Caps. de	carga ³⁾ (N)	Peso	
Ød													estándar	torsiór	n M _t			Lineal	Eje
Tipo 1	Tipo 2	В	H₁	H ¹⁾	H ₂	L	D	E ₁	E ₂	S ²⁾	S ₁	N	- 1		(Nm)	din. C	estát. C ₀	Set	
				+0,013										Tipo 1	Tipo 2				
				-0,022									(mm)					(kg)	(kg/m)
12	-	42	35	18	8,5	40	22	28	30	5,3	M6	12	400	2,0	_	640	420	0,15	0,89
16	_	50	42	22	10,0	44	26	30	36	5,3	M6	12	400	3,3	_	780	530	0,22	1,57
20	20	60	50	25	11,0	55	32	39	44	6,6	M8	12	500	7,5	12	1550	1050	0,42	2,45
25	25	74	60	30	15,5	68	40	48	54	8,4	M10	15	500	15,0	24	3030	2180	0,70	3,80
30	30	84	70	35	16,5	80	47	58	62	10,5	M12	18	600	23,0	37	3680	2790	1,10	5,50
40	40	108	90	45	18,5	92	62	64	80	13,5	M16	20	600	53,0	86	6320	4350	2,10	9,80
50	50	130	105	50	22,5	114	75	84	100	13,5	M16	20	600	103,0	167	9250	6470	3,50	15,30

- En caso de 2 o más sets lineales sobre un eje, se mecanizan montados hasta alcanzar la medida H.
 En este caso, la medida H es 0,5 mm más pequeña.
- 2) Tornillos de fijación ISO 4762-8.8
- 3) Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de carga no se puede definir claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Indicación de lubricación: Lubricación a través del taladro de lubricación, con el eje montado y hasta que salga el lubricante.

Sets lineales con rodamientos lineales Antigiro, carcasa de aluminio

Tandem

Sets lineales, R1099 2.. Tipo 1: una ranura guía

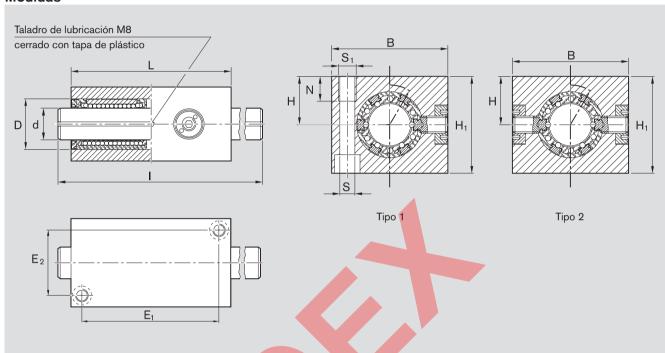
Sets lineales, R1099 5.. Tipo 2: dos ranuras guía

Construcción

- Carcasa de precisión Tandem en construcción ligera (aluminio)
- Dos rodamientos lineales Antigiro Compactos
- Eje de acero de precisión con ranura guía
- Insertos de acero templados que transfieren el par de giro, ajustados de fábrica sin juego
- Retenes adicionales
- Ejecución sin vuelco
- Relubricables

Eje	Referencias del set lineal Antigiro con eje								
Ød	Longitud estándar según	Longitud del eje según	Eje mecanizado según						
(mm)	tabla	indicación ¹⁾	plano						
	LSADR1TWV	LSADR1TWV-K	LSADR1TSPECIAL						
12	R1099 212 80	R1099 212 89	R1099 212 86						
16	R1099 216 80	R1099 216 89	R1099 216 86						
20	R1099 220 80	R1099 220 89	R1099 220 86						
25	R1099 225 80	R1099 225 89	R1099 225 86						
30	R1099 230 80	R1099 230 89	R1099 230 86						
40	R1099 240 80	R1099 240 89	R1099 240 86						
50	R1099 250 80	R1099 250 89	R1099 250 86						

85 Longitud del eje 900 mm 87 Longitud del eje 1200 mm 88 Longitud del eje 2000 mm


Eje	Referencias del set lineal Antigiro con eje								
Ød	Longitud estándar según	ongitud estándar según Longitud del eje según Eje mecar							
(mm)	tabla	indicación ¹⁾	plano						
	LSADR2TWV	LSADR2TWV-K	LSADR2TSPECIAL						
20	R1099 520 80	R1099 520 89	R1099 520 86						
25	R1099 525 80	R1099 525 89	R1099 525 86						
30	R1099 530 80	R1099 530 89	R1099 530 86						
40	R1099 540 80	R1099 540 89	R1099 540 86						
50	R1099 550 80	R1099 550 89	R1099 550 86						

85 Longitud del eje 900 mm 87 Longitud del eje 1200 mm 88 Longitud del eje 2000 mm

En algunos casos, disponible también con eje hueco a partir del diámetro de eje 25:
 R1099 ... 69 o con eje de acero anticorrosivo según ISO 683-17 / EN 10088: R1099 ... 79.

Ejemplo de aclaración de abreviación

LS	Α	DR	2	T	20	WV	2000
Set lineal	Aluminio	Par de giro	2 ranura guía	Tandem	Ø 20	Con eje	2000 mm

Medid	as (mm))										Longitud	Mome	nto de	Caps. de	carga ³⁾ (N)	Peso	
	Ød											estándar	torsiór	n M _t			Lineal	Eje
Tipo 1	Tipo 2	В	H ₁	H ¹⁾	L	D	E₁	E ₂	S ²⁾	S ₁	N	- 1		(Nm)	din. C	estát. C ₀	Set	
				+0,013									Tipo 1	Tipo 2				
				-0,022								(mm)					(kg)	(kg/m)
12	-	42	35	18	76	22	64	30	5,3	M6	12	400	3,2	_	1040	840	0,29	0,89
16	-	50	42	22	84	26	70	36	5,3	M6	12	400	5,5	_	1260	1060	0,43	1,57
20	20	60	50	25	104	32	88	44	6,6	M8	12	500	12,0	20	2500	2100	0,80	2,45
25	25	74	60	30	130	40	110	54	8,4	M10	15	500	24,0	40	4900	4360	1,50	3,80
30	30	84	70	35	152	47	130	62	10,5	M12	18	600	37,0	60	6000	5580	2,20	5,50
40	40	108	90	45	176	62	148	80	13,5	M16	20	600	86,0	140	10200	8700	4,00	9,80
50	50	130	105	50	224	75	194	100	13,5	M16	20	600	167,0	272	15000	12940	6,90	15,30

- En caso de 2 o más sets lineales sobre un eje, se mecanizan montados hasta alcanzar la medida H.
 En este caso, la medida H es 0,5 mm más pequeña.
- 2) Tornillos de fijación ISO 4762-8.8
- Capacidad de carga, cuando ambos rodamientos lineales están cargados de manera uniforme.
 Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de carga no se puede definir claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Indicación de lubricación: Lubricación a través del taladro de lubricación, con el eje montado y hasta que salga el lubricante.

Sets lineales con rodamientos lineales Antigiro, carcasa de acero

Sets lineales, R1096 2... Tipo 1: una ranura guía

Sets lineales, R1096 5... Tipo 2: dos ranuras guía

Construcción

- Carcasa de precisión de acero
- Rodamiento lineal Antigiro
- Eje de acero de precisión con ranura
- Insertos de acero templados que transfieren el par de giro, ajustados de fábrica sin juego
- Retenes adicionales
- Ejecución sin vuelco: véanse sets lineales Tandem

Eje	Referencias del set lineal	Antigiro con eje			
Ød	Longitud estándar según	Longitud del eje según	Eje mecanizado según		
(mm)	tabla	indicación ¹⁾	plano		
	LSSDR1WV	LSSDR1WV-K	LSSDR1SPECIAL		
12	R1096 212 80	R1096 212 89	R1096 212 86		
16	R1096 216 80	R1096 216 89	R1096 216 86		
20	R1096 220 80	R1096 220 89	R1096 220 86		
25	R1096 225 80	R1096 225 89	R1096 225 86		
30	R1096 230 80	R1096 230 89	R1096 230 86		
40	R1096 240 80	R1096 240 89	R1096 240 86		
50	R1096 250 80	R1096 250 89	R1096 250 86		

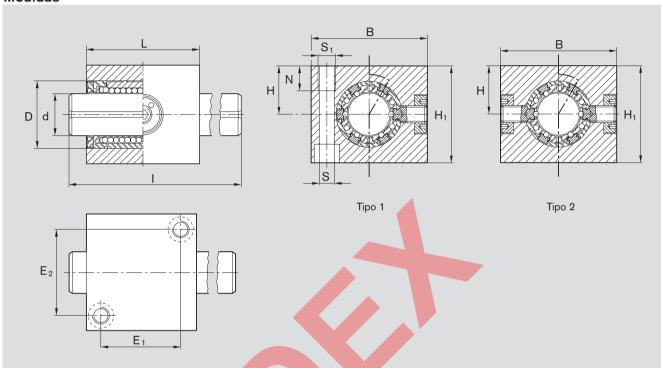
Longitud del eje 900 mm 87 Longitud del eje 1200 mm

88 Longitud del eje 2000 mm

Tipo 2: dos ranuras guía

Eje	Referencias del set lineal	Antigiro con eje	
Ø	d Longitud estándar según	Longitud del eje según	Eje mecanizado según
(mn	n) tabla	indicación ¹⁾	plano
	LSSDR2WV	LSSDR2WV-K	LSSDR2SPECIAL
2	R1096 520 80	R1096 520 89	R1096 520 86
2	R1096 525 80	R1096 525 89	R1096 525 86
3	R1096 530 80	R1096 530 89	R1096 530 86
4	R1096 540 80	R1096 540 89	R1096 540 86
5	R1096 550 80	R1096 550 89	R1096 550 86

- 85 Longitud del eje 900 mm


- 87 Longitud del eje 1200 mm

- 88 Longitud del eje 2000 mm

1) En algunos casos, disponible también con eje hueco a partir del diámetro de eje 25: R1096 ... 69 o con eje de acero anticorrosivo según ISO 683-17 / EN 10088: R1096 ... 79.

Ejemplo de aclaración de abreviación

LS	S	DR	2	20	WV	2000
Set lineal	Acero	Par de giro	2 ranura guía	Ø 20	Con eje	2000 mm

Medid	as (mm))											Longitud	Mome	nto de	Caps. de	e carga ³⁾	Peso	
	Ød												estándar	torsiór	n M _t			Lineal	Eje
Tipo 1	Tipo 2	В	H ₁	Н	(1)	L	D	E ₁	E ₂	S ²⁾	S ₁	N	1		(Nm)	din. C	estát. C ₀	Set	
				+0,0	13									Tipo 1	Tipo 2				
				-0,0	22								(mm)					(kg)	(kg/m)
12	-	42	35	1	8	40	22	28	30	5,3	M6	12	400	2,0	_	640	420	0,35	0,89
16	_	50	42	2	22	44	26	30	36	5,3	M6	12	400	3,3	_	780	530	0,55	1,57
20	20	60	50	2	25	55	32	39	44	6,6	M8	12	500	7,5	12	1550	1050	1,00	2,45
25	25	74	60	3	30	68	40	48	54	8,4	M10	15	500	15,0	24	3030	2180	1,50	3,80
30	30	84	70	3	35	80	47	58	62	10,5	M12	18	600	23,0	37	3680	2790	2,70	5,50
40	40	108	90	4	15	92	62	64	80	13,5	M16	20	600	53,0	86	6320	4350	5,00	9,80
50	50	130	105	5	50	114	75	84	100	13,5	M16	20	600	103,0	167	9250	6470	8,70	15,30

- En caso de 2 o más sets lineales sobre un eje, se mecanizan montados hasta alcanzar la medida H.
 La medida H es 0,5 mm más pequeña.
- 2) Tornillos de fijación ISO 4762-8.8
- 3) Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de carga no se puede definir claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Sets lineales con rodamientos lineales Antigiro, carcasa de acero

Tandem

Juegos lineales, R1097 2.. Tipo 1: una ranura guía

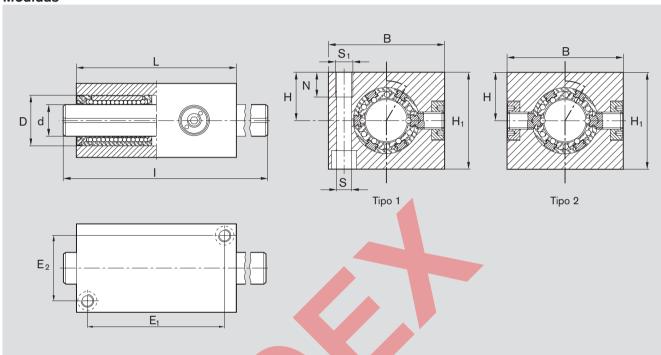
Juegos lineales, R1097 5.. Tipo 2: dos ranuras guía

Construcción

- Carcasa Tandem de precisión de acero
- Dos rodamientos lineales Antigiro Compactos
- Eje de acero de precisión con ranura guía
- Insertos de acero templados que transfieren el par de giro, ajustados de fábrica sin juego
- Retenes adicionales
- Ejecución sin vuelco

			7		
Eje	Referencias del set lineal	Antigiro con eje			
Ød	Longitud estándar según	Longitud del eje según	Eje mecanizado según		
(mm)	tabla	indicación ¹⁾	plano		
	LSSDR1TWV	LSSDR1TWV-K	LSSDR1TSPECIAL		
12	R1097 212 80	R1097 212 89	R1097 212 86		
16	R1097 216 80	R1097 216 89	R1097 216 86		
20	R1097 220 80	R1097 220 89	R1097 220 86		
25	R1097 225 80	R1097 225 89	R1097 225 86		
30	R1097 230 80	R1097 230 89	R1097 230 86		
40	R1097 240 80	R1097 240 89	R1097 240 86		
50	R1097 250 80	R1097 250 89	R1097 250 86		

85 Longitud del eje 900 mm 87 Longitud del eje 1200 mm 88 Longitud del eje 2000 mm


Eje	Referencias del set lineal Antigiro con eje													
Ød	Longitud estándar según Longitud del eje según Eje mecanizado según													
(mm)	tabla	indicación ¹⁾	plano											
	LSSDR2TWV	LSSDR2TWV-K	LSSDR2TSPECIAL											
20	R1097 520 80	R1097 520 89	R1097 520 86											
25	R1097 525 80	R1097 525 89	R1097 525 86											
30	R1097 530 80	R1097 530 89	R1097 530 86											
40	R1097 540 80	R1097 540 89	R1097 540 86											
50	R1097 550 80	R1097 550 89	R1097 550 86											

85 Longitud del eje 900 mm 87 Longitud del eje 1200 mm 88 Longitud del eje 2000 mm

1) En algunos casos, disponible también con eje hueco a partir del diámetro de eje 25: R1097 ... 69 o con eje de acero anticorrosivo según ISO 683-17 / EN 10088: R1097 ... 79.

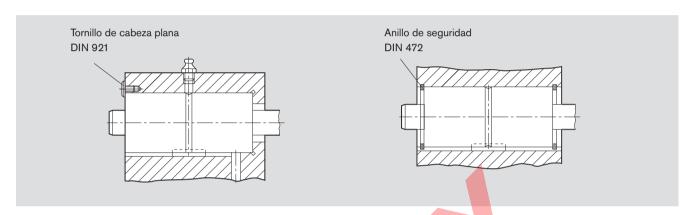
Ejemplo de aclaración de abreviación

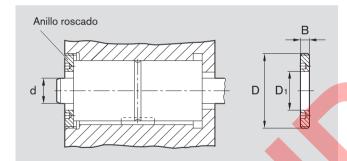
LS	S	DR	2	Т	20	WV	2000
Set lineal	Acero	Par de giro	2 ranura guía	Tandem	Ø 20	Con eje	2000 mm

Medid	las (mm))										Longitud	Mome	nto de	Caps. de	carga ³⁾ (N)	Peso	
	Ød											estándar	torsiór	n M _t			Lineal	Eje
Tipo 1	Tipo 2	В	H ₁	H ¹⁾	L	D	Εı	E ₂	S ²⁾	S ₁	N	- 1		(Nm)	din. C	estát. C ₀	Set	
				+0,013									Tipo 1	Tipo 2				
				-0,022								(mm)					(kg)	(kg/m)
12	-	42	35	18	76	22	64	30	5,3	M6	12	400	3,2	_	1040	840	0,7	0,89
16	_	50	42	22	84	26	70	36	5,3	M6	12	400	5,5	_	1260	1060	1,0	1,57
20	20	60	50	25	104	32	88	44	6,6	M8	12	500	12,0	20	2500	2100	1,9	2,45
25	25	74	60	30	130	40	110	54	8,4	M10	15	500	24,0	40	4900	4360	3,5	3,80
30	30	84	70	35	152	47	130	62	10,5	M12	18	600	37,0	60	6000	5580	5,2	5,50
40	40	108	90	45	176	62	148	80	13,5	M16	20	600	86,0	140	10200	8700	9,8	9,80
50	50	130	105	50	224	75	194	100	13,5	M16	20	600	167,0	272	15000	12940	17,0	15,30

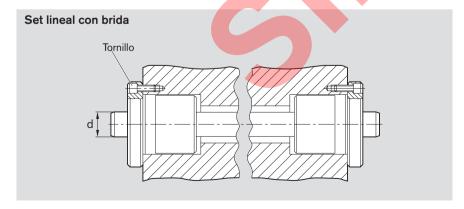
- En caso de 2 o más sets lineales sobre un eje, se mecanizan montados hasta alcanzar la medida H. La medida H es 0,5 mm más pequeña.
- 2) Tornillos de fijación ISO 4762-8.8
- Capacidad de carga, cuando ambos rodamientos lineales están cargados de manera uniforme.
 Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de carga no se puede definir claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.


Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.



Sets lineales con rodamientos lineales Antigiro Compactos


Montaje

- Recomendaciones para el montaje, para la disposición de canales y taladros de lubricación, así como para la seguridad (fijación)
- Taladro de alojamiento recomendado: DH6 (DJ6)

Eje	Anillo roscado								
Ød	Referencia	Medidas (n	Medidas (mm)						
(mm)		D	D ₁	В	(g)				
12	R1507 1 4003	M40x1,5	22	8	39,5				
16	R1507 2 4004	M45x1,5	28	8	55,0				
20	R1507 3 4005	M55x1,5	34	10	96,0				
25	R1507 4 4006	M70x1,5	42	12	216,0				
30	R1507 5 4007	M78x2	52	15	286,0				
40	R1507 6 4009	M92x2	65	16	385,0				
50	R1507 7 4011	M112x2	82	18	596,0				
50	R1507 7 4011	M112x2	82	18	596,0				

Eje	Tornillo
Ød	ISO 4762-8.8
(mm)	
12	M4x16
16	M4x16
20	M5x16
25	M6x20
30	M8x25
40	M8x25
50	M10x30

Lubricación

Lubricación inicial

A los rodamientos lineales Antigiro no se les aplica una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 21.

Los rodamientos lineales eLINE vienen ya con una lubricación inicial. Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.

- Lubricación del set lineal con un rodamiento lineal Antigiro Compacto: a través de taladro de lubricación Ø 3,9 con el eje montado, hasta que salga lubricante.
- Lubricación del set lineal Tandem: por la ranura de lubricación central del diámetro exterior, con el eje montado, hasta que salga lubricante.
- Lubricación del set lineal con brida: a través del engrasador tipo embudo situado en la cara frontal, con el eje montado, hasta que salga lubricante.

Sets lineales con rodamientos lineales Antigiro Compactos

Sets lineales, R0721

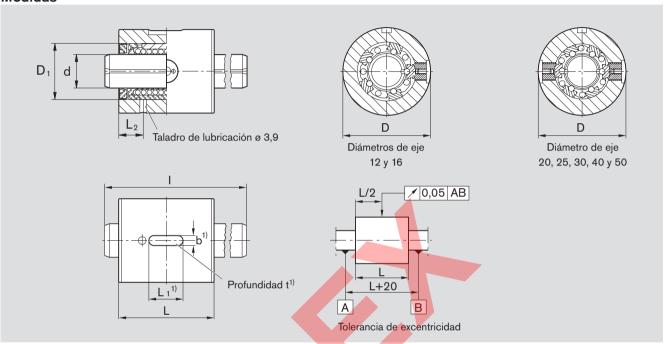
Construcción

- Casquillo compacto de acero
- Rodamiento lineal Antigiro Compacto
- Eje de acero de precisión con ranura guía
- Insertos de acero templados que transfieren el par de giro, ajustados de fábrica sin juego
- Retenes adicionales
- Ejecución sin vuelco: véanse sets lineales Tandem
- Chavetero para transmisión del par de giro
- Relubricables

- Una ranura guía en caso de diámetros de eje 12 y 16 mm
- Dos ranuras guía a partir del diámetro de eje 20 mm

Ø d Longitud estándar según Longitud del eje según Eje mecanizado segú	n
(mm) tabla indicación¹) plano	
LSHDRWV LSHDRWV-K LSHDRSPECIAL	
12 R0721 212 80 R0721 212 89 R0721 212 86	
16 R0721 216 80 R0721 216 89 R0721 216 86	
20 R0721 520 80 R0721 520 89 R0721 520 86	
25 R0721 525 80 R0721 5 25 89 R0721 525 86	
30 R0721 530 80 R0721 530 89 R0721 530 86	
40 R0721 540 80 R0721 540 89 R0721 540 86	
50 R0721 550 80 R0721 550 89 R0721 550 86	

85 Longitud del eje 900 mm 87 Longitud del eje 1200 mm 88 Longitud del eje 2000 mm


1) También disponible con eje hueco a partir de diámetro 25: R0721 ... 69 o con eje de acero anticorrosivo según ISO 683-17 / EN 10088: R0721 ... 79.

Ejemplo de aclaración de abreviación

LS	Н	DR	2	20	WV	2000
Set lineal	Rodamiento lineal Compacto, forma de casquillo	Par de giro	2 ranura guía	Ø 20	Con eje	2000 mm

Encontrará más información acerca de la abreviación en Página 159.

Medidas

1) Para chaveta A... DIN 6885.

Medid	as (mm)							Longitu	d estándar	Momento de	Caps. de	carga ²⁾ (N)	Peso	
Ød	D	L	D ₁	L ₁	b	t	L_2		, I	torsión M _t	din. C	estát. C ₀	Set lineal	Eje
	h6	h11			P9				(mm)	(Nm)			(kg)	(kg/m)
12	32	40	22	14	5	3,0	11,0		400	2,0	640	420	0,16	0,89
16	36	44	26	16	5	3,0	12,0		400	3,3	780	530	0,20	1,57
20	48	55	32	20	5	3,0	14,0		500	12,0	1550	1050	0,50	2,45
25	56	68	40	25	6	3,5	15,5		500	24,0	3030	2180	0,80	3,80
30	65	80	47	28	6	3,5	16,5		600	37,0	3680	2790	1,20	5,50
40	80	92	62	32	8	4,0	18,5		600	86,0	6320	4350	1,80	9,80
50	100	114	75	40	8	4,0	22,5		600	167,0	9250	6470	3,70	15,30

²⁾ Las capacidades de carga indicada<mark>s corresp</mark>onden a los valores mínimos, ya que la posición y la dirección de la carga no siempre pueden definirse claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Sets lineales con rodamientos lineales Antigiro Compactos

Tandem

Sets lineales, R0722

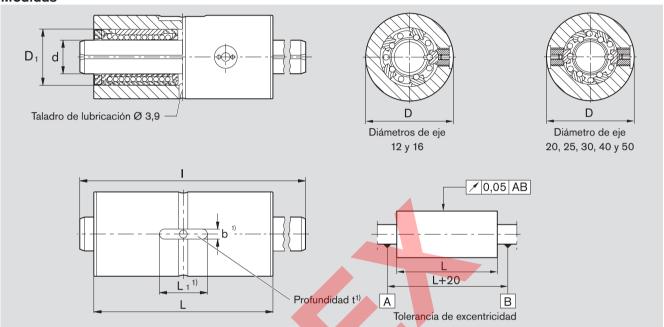
Construcción

- Casquillo compacto de acero
- Dos rodamientos lineales Antigiro Compactos
- Eje de acero de precisión con ranura guía
- Insertos de acero templados que transfieren el par de giro, ajustados de fábrica sin juego
- Retenes adicionales
- Ejecución sin vuelco
- Chavetero para transmisión del par de giro
- Relubricables

- Una ranura guía en caso de diámetros de eje 12 y 16 mm
- Dos ranuras guía a partir del diámetro de eje 20 mm

Eje	Referencias del set lineal	Antigiro con eje	
Ød	Longitud estándar según	Longitud del eje según	Eje mecanizado según
(mm)	tabla	indicación ¹⁾	plano
	LSHDR.TWV	LSHDR.TWV-K	LSHDR.TSPECIAL
12	R0722 212 80	R0722 212 89	R0722 212 86
16	R0722 216 80	R0722 216 89	R0722 216 86
20	R0722 520 80	R0722 520 89	R0722 520 86
25	R0722 525 80	R0722 525 89	R0722 525 86
30	R0722 530 80	R0722 530 89	R0722 530 86
40	R0722 540 80	R0722 540 89	R0722 540 86
50	R0722 550 80	R0722 550 89	R0722 550 86

85 Longitud del eje 900 mm
87 Longitud del eje 1200 mm
88 Longitud del eje 2000 mm


1) También disponible con eje hueco a partir de diámetro 25: R0722 ... 69 o con eje de acero anticorrosivo según ISO 683-17 / EN 10088: R0722 ... 79.

Ejemplo de aclaración de abreviación

LS	Н	DR	2	Т	20	WV	2000
Set lineal	Rodamiento lineal Compacto, forma de casquillo	Par de giro	2 ranura guía	Tandem	Ø 20	Con eje	2000 mm

Encontrará más información acerca de la abreviación en Página 159.

Medidas

1) Chaveta A... DIN 6885

Medidas (mm)					Longitud estándar		Momento de	Caps. de carga ²⁾ (N)		Peso			
Ød	D	L	D ₁	L ₁	b	t			torsión M _t	din. C	estát. C ₀	Set lineal	Eje
	h6	h11			P9			(mm)	(Nm)			(kg)	(kg/m)
12	32	76	22	20	5	3,0		400	3,2	1040	840	0,32	0,89
16	36	84	26	22	5	3,0		400	5,5	1260	1060	0,40	1,57
20	48	104	32	28	5	3,0		500	20,0	2500	2100	0,95	2,45
25	56	130	40	36	6	3,5		500	40,0	4900	4360	1,50	3,80
30	65	152	47	40	6	3,5		600	60,0	6000	5580	2,30	5,50
40	80	176	62	45	8	4,0		600	140,0	10200	8700	3,50	9,80
50	100	224	75	63	8	4,0		600	272,0	15000	12940	7,30	15,30

2) Capacidad de carga, cuando ambos rodamientos están cargados de igual manera.

Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de carga no se puede definir claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Sets lineales con rodamientos lineales Antigiro Compactos

Brida

Sets lineales, R0723

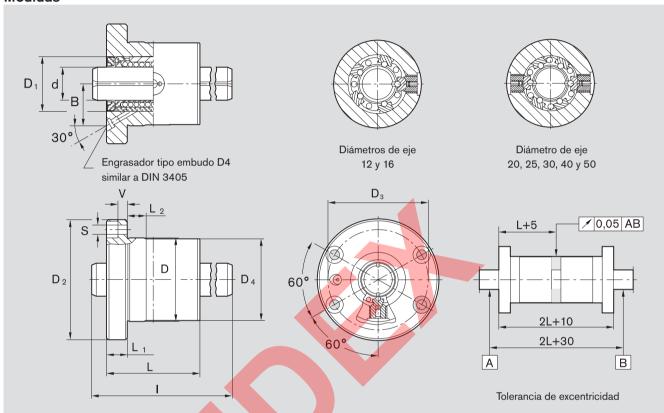
Construcción

- Casquillo con brida de acero
- Rodamiento lineal Antigiro Compacto
- Eje de acero de precisión con ranura guía
- Insertos de acero templados que transfieren el par de giro, ajustados de fábrica sin juego
- Retenes adicionales
- Ejecución sin vuelco:
 Montaje de 2 sets lineales, véase el capítulo "Montaje de sets lineales con rodamientos lineales Antigiro"
- Relubricables

- Una ranura guía en caso de diámetros de eje 12 y 16 mm
- Dos ranuras guía a partir del diámetro de eje 20 mm

Eje	Referencias del set lineal	Antigiro con eje	
Ød	Longitud estándar según	Longitud del eje según	Eje mecanizado según
(mm)	tabla	indicación ¹⁾	plano
	LSFDRWV	LSFDRWV-K	LSFDRSPECIAL
12	R0723 212 80	R0723 212 89	R0723 212 86
16	R0723 216 80	R0723 216 89	R0723 216 86
20	R0723 520 80	R0723 520 89	R0723 520 86
25	R0723 525 80	R0723 525 89	R0723 525 86
30	R0723 530 80	R0723 530 89	R0723 530 86
40	R0723 540 80	R0723 540 89	R0723 540 86
50	R0723 550 80	R0723 550 89	R0723 550 86

85 Longitud del eje 900 mm
87 Longitud del eje 1200 mm
88 Longitud del eje 2000 mm


1) También disponible con eje hueco a partir de diámetro 25: R0723 ... 69 o con eje de acero anticorrosivo según ISO 683-17 / EN 10088: R0723 ... 79.

Ejemplo de aclaración de abreviación

LS	F	DR	2	20	WV	2000
Set lineal	Rodamiento lineal Compacto, brida	Par de giro	2 ranura guía	Ø 20	Con eje	2000 mm

Encontrará más información acerca de la abreviación en Página 159.

Medidas

Medid	as (mi	n)										Longitud	Momento de	Caps. de	carga ²⁾ (N)	Peso	
Ød	D	D_4	D_1	D_2	L	L ₁	L ₂	D_3	S ¹⁾	V	В	estándar	torsión M _t	din. C	estát. C ₀	Set lineal	Eje
	h6	-0,1			h11	-0,2						- 1					
		-0,3										(mm)	(Nm)			(kg)	(kg/m)
12	32	32	22	50	40	10	10	40	4,5	4,5	17,4	400	2,0	640	420	0,25	0,89
16	36	36	26	54	44	10	10	44	4,5	4,5	20,0	400	3,3	780	530	0,30	1,57
20	48	48	32	70	55	12	10	58	5,5	5,0	24,0	500	12,0	1550	1050	0,70	2,45
25	56	56	40	82	68	14	10	68	6,6	5,5	29,0	500	24,0	3030	2180	1,10	3,80
30	65	65	47	98	80	18	10	80	9,0	7,0	33,0	600	37,0	3680	2790	1,75	5,50
40	80	80	62	114	92	18	16	95	9,0	7,0	41,7	600	86,0	6320	4350	2,50	9,80
50	100	100	75	140	114	22	16	118	11,0	8,5	50,5	600	167,0	9250	6470	4,85	15,30

¹⁾ Tornillos de fijación ISO 4762-8.8

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

²⁾ Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de carga no se puede definir claramente.

Rodamientos lineales Antigiro con cuatro ranuras guía

Rodamiento lineal Antigiro, R0724 2 con cuatro ranuras guía

Construcción

- Casquillo templado y rectificado
- Jaula de guiado POM
- Bolas de acero de rodamientos
- Retenes integrados
- Con chavetero para la transmisión del par de giro
- Relubricables

Tamaño	Referencia	Peso
	KBDR4-HDD	(kg)
4	R0724 204 00	0,0065
6	R0724 206 00	0,0190
8	R0724 208 00	0,0230
10	R0724 210 00	0,0540
13	R0724 213 00	0,0700
16	R0724 216 00	0,1500
20	R0724 220 00	0,2000
25	R0724 225 00	0,2200
30	R0724 230 00	0,3500
40	R0724 240 00	0,8100
50	R0724 250 00	1,5000

Ejemplo de aclaración de abreviación

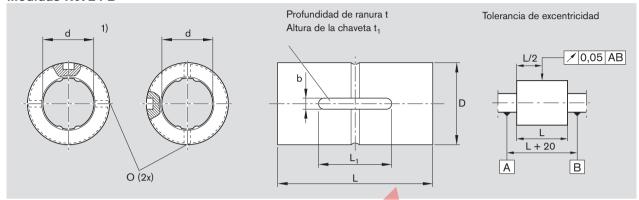
KB	DR	4	Н		20	DD
Rodamiento lineal	Par de giro	4 ranura guía	Cilíndrico, forma de	casquillo	Tamaño 20	Retenes integrados

Encontrará más información acerca de la abreviación en Página 158.

Ejes de acero de precisión R0724 0 con cuatro ranuras guía

para rodamientos lineales Antigiro R0724, brida R0725, brida miniatura R0726 y brida rotativa R0727

Tamaño	Referencias de eje	s macizos		Peso
	WVDR4	WVDR4K	WVDR4SPECIAL	
	Longitud de eje	Longitud de eje	Eje mecanizado	
	I _{max.}	según indicaciones	según dibujo	(kg/m)
4	R0724 004 02	R0724 004 89	R0724 004 86	0,10
6	R0724 006 02	R0724 006 89	R0724 006 86	0,21
8	R0724 008 02	R0724 008 89	R0724 008 86	0,38
10	R0724 010 02	R0724 010 89	R0724 010 86	0,60
13	R0724 013 02	R0724 013 89	R0724 013 86	1,00
16	R0724 016 02	R0724 016 89	R0724 016 86	1,50
20	R0724 020 02	R0724 020 89	R0724 020 86	2,00
25	R0724 025 02	R0724 025 89	R0724 025 86	3,10
30	R0724 030 02	R0724 030 89	R0724 030 86	4,80
40	R0724 040 02	R0724 040 89	R0724 040 86	8,60
50	R0724 050 02	R0724 050 89	R0724 050 86	13,10



Tamaño	Referencias de ejes	huecos		Peso
	WODR4	WODR4K	WODR4SPECIAL	
	Longitud de eje	Longitud de eje	Eje mecanizado	
	I _{max.}	según indicaciones	según dibujo	(kg/m)
4	R0724 004 32	R0724 004 69	R0724 004 66	0,082
6	R0724 006 32	R0724 006 69	R0724 006 66	0,195
8	R0724 008 32	R0724 008 69	R0724 008 66	0,340
10	R0724 010 32	R0724 010 69	R0724 010 66	0,510
13	R0724 013 32	R0724 013 69	R0724 013 66	0,800
16	R0724 016 32	R0724 016 69	R0724 016 66	1,200

Ejemplo de aclaración de abreviación

WV	DR	4	20	600
Eje macizo	Par de giro	4 ranura guía	Tamaño 20	600 mm de largo

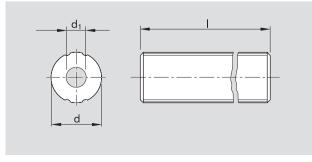
Medidas R0724 2

1) Tamaños 4, 6, 8, 10

Tamaño ²⁾	Medida	s (mm)							Momento de torsión (Nm) Caps. de			arga ³⁾ (N)
	Ød	D	L	L ₁	0	t	t ₁	b	din. M _t	estát. M _{to}	din. C	estát. C ₀
_		h6				/						
4	4,0	10	16 _{-0,2}	6,0	_	1,2	2,0	2,0	0,59	1,05	680	1220
6	6,0	14	$25_{-0,2}$	10,5	1,0	1,2	2,5	2,5	1,20	2,40	970	2280
8	8,0	16	25_0,2	10,5	1,5	1,2	2,5	2,5	1,70	3,70	1150	2870
10	10,0	21	33_0,2	13,0	1,5	1,5	3,0	3,0	3,50	8,20	2170	5070
13	13,0	24	36_0,2	15,0	1,5	1,5	3,0	3,0	16,70	39,20	2120	4890
16	16,0	31	50_0,2	17,5	2,0	2,0	3,5	3,5	48,00	110,00	4860	11200
20	18,2	32	60_0,2	26,0	2,0	2,5	4,0	4,0	66,00	133,00	6200	11300
25	23,0	37	70_0,3	33,0	3,0	3,0	5,0	5,0	129,00	239,00	9800	16100
30	28,0	45	80_0,3	41,0	3,0	4,0	7,0	7,0	229,00	412,00	14800	23200
40	37,4	60	100_0,3		4,0	4,5	8,0	10,0	500,00	882,00	24400	37500
50	47,0	75	112_0,3	60,0	4,0	5,0	10,0	15,0	1100,00	3180,00	36600	74200

- 2) Diámetros de ejes diferentes
- 3) Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de carga no se puede definir claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.


Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Instrucciones de montaje:

Tolerancia del taladro de la carcasa recomendada: H6 o H7. Juego radial: ca \pm 5 μ m;

Al introducir el eje, alinear las rodaduras y los retenes entre sí y no inclinarnos.

Medidas R0724 0

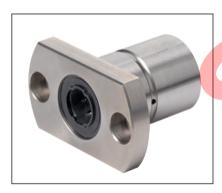
Tamaño ¹⁾	Medidas (mm)		
	Ø d h7	d ₁	Longitud del eje
4	4,0	1,5	300
6	6,0	2,0	600
8	8,0	3,0	600
10	10,0	4,0	600
13	13,0	6,0	600
16	16,0	8,0	600
20	18,2	_	1500
25	23,0	_	1500
30	28,0	-	1500
40	37,4	-	1800
50	47,0	_	1800

1) Diámetros de ejes diferentes

T----- (mama)

Rodamientos lineales Antigiro con cuatro ranuras guía

Rodamiento lineal Antigiro, R0725 brida con cuatro ranuras guía


Rodamiento lineal Antigiro, R0726 brida miniatura con cuatro ranuras guía

Construcción

- Casquillo templado y rectificado
- Jaula de guiado POM
- Bolas de acero de rodamientos
- Retenes integrados
- Relubricables

Tamaño	Referencia	Peso
	KBDR4-FDD	(kg)
6	R0725 206 00	0,037
8	R0725 208 00	0,042
10	R0725 210 00	0,094
13	R0725 213 00	0,100
16	R0725 216 00	0,200
20	R0725 220 00	0,220
25	R0725 225 00	0,320
30	R0725 230 00	0,510
40	R0725 240 00	1,150
50	R0725 250 00	2,100

Tan	naño	Referencia	Peso
		KBDR4-FMDD	(kg)
6		R0726 206 00	0,029
8		R0726 208 00	0,035
10		R0726 210 00	0,075

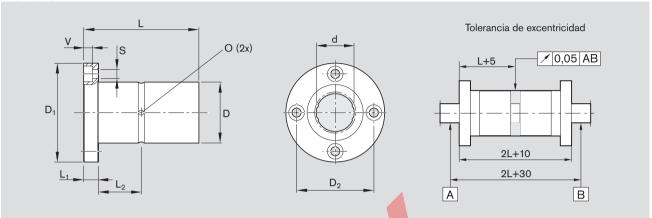
Nota:

Véase los ejes compatibles en "Ejes de acero de precisión R0724 0 con cuatro ranuras guía".

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

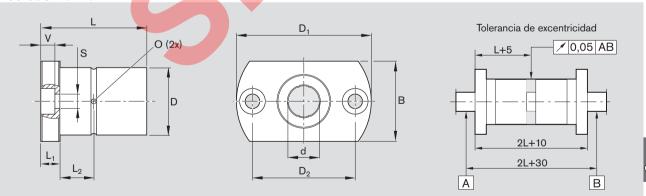
Instrucciones de montaje:

Tolerancia del taladro de la carcasa recomendada: H6 o H7.


Juego radial: aprox. ± 5 μm;

Al introducir el eje, alinear las rodaduras y los retenes entre sí y no inclinarnos.

Ejemplo de aclaración de abreviación


KB	DR	4	F	20	DD
Rodamiento lineal	Par de giro	4 ranura guía	Forma de brida	Tamaño 20	Retenes integrados

Medidas R0725

Tamaño ¹⁾	Medida	Medidas (mm)										nento de l	torsión (Nm)	Caps. de	carga ²⁾ (N)
	Ød	D	D ₁	D_2	L	L ₁	L ₂	V	S ³⁾	0		din. M _t	estát. M _{to}	din. C	estát. C ₀
		h6									1				
6	6,0	14	30	22	25_0,2	5	7,5	3,3	3,4	1,0		1,2	2,4	970	2280
8	8,0	16	32	24	25_0,2	5	7,5	3,3	3,4	1,5		1,7	3,7	1150	2870
10	10,0	21	42	32	33_0,2	6	10,5	4,4	4,5	1,5		3,5	8,2	2170	5070
13	13,0	24	43	33	36_0,2	7	11,0	4,4	4,5	1,5		16,7	39,2	2120	4890
16	16,0	31	50	40	50_0,2	7	18,0	4,4	4,5	2,0		48,0	110,0	4860	11200
20	18,2	32	51	40	60_0,2	7	23,0	4,4	4,5	2,0		66,0	133,0	6200	11300
25	23,0	37	60	47	70_0,3	9	26,0	5,4	5,5	3,0		129,0	239,0	9800	16100
30	28,0	45	70	54	80_0,3	10	30,0	6,5	6,6	3,0		229,0	412,0	14800	23200
40	37,4	60	90	72	100_0,3	14	36,0	8,6	9,0	4,0		500,0	882,0	24400	37500
50	47,0	75	113	91	112_0,3	16	40,0	11,0	11,0	4,0		1100,0	3180,0	36600	74200

Medidas R0726

S³⁾

3,4

3,4

4,5

0

1,0

1,5

1,5

1,7

3,5

٧

3,3

3,3

4,4

A			Ь
Momento de to	orsión (Nm)	Caps. de	carga ²⁾ (N)
Momento de to din. M _t	estát. M _{t0}	din. C	estát. C ₀
1.2	2.4	970	2280

3,7

8,2

1150

2170

2870

5070

10 1) Diámetros de ejes diferentes

Ød

6

8 16

Tamaño¹⁾

6

8

10

2) Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la dirección de carga no se puede definir claramente.

 L_2

7,5

7,5

3) Tornillos de fijación ISO 4762-8.8

Medidas (mm)

D

h6

14

21

 D_1

30

32

 D_2

22

24

32

В

18

21

25

L

-0,2

25

25

33

 L_1

5

5

6 10,5 190 Bosch Rexroth AG

Rodamientos lineales Antigiro con cuatro ranuras guía

Rodamiento lineal Antigiro, R0727 brida rotativa con cuatro ranuras guía

Construcción

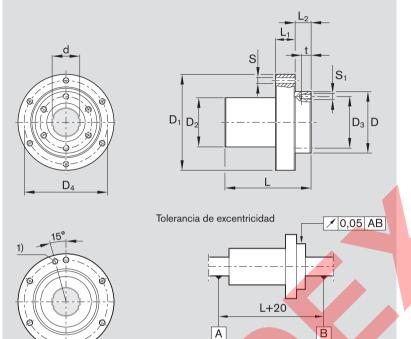
- Casquillo templado y rectificado
- Jaula de guiado POM
- Bolas de acero de rodamientos
- Retenes integrados
- Rodamiento de rodillos cruzados integrado con lubricación inicial

Tamaño	Referencia		Peso
	KBDR4-LRDD		(kg)
20	R0727 220 00		0,45
25	R0727 225 00		0,75
30	R0727 230 00		1,25
40	R0727 240 00		2,30

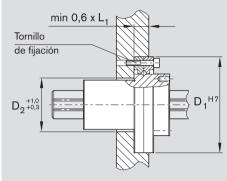
Nota:

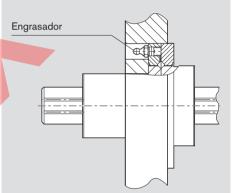
Véase los ejes compatibles en "Ejes de acero de precisión R0724 0 con cuatro ranuras guía".

Ejemplo de aclaración de abreviación


KB	DR	4	LR	20	DD
Rodamiento lineal	Par de giro	4 ranu <mark>ra gu</mark> ía	Con rodamiento de rotación	Tamaño 20	Retenes integrados

Encontrará más información acerca de la abreviación en Página 158.


Indicaciones de lubricación


Al rodamiento lineal se le debe aplicar una lubricación inicial y, para relubricarlo, debe desmontarse del eje. El rodamiento de rodillos cruzados viene con una lubricación inicial y puede relubricarse mediante la conexión de lubricación.

Medidas

 Conexión de lubricación M6 x 0,75 para rodamiento de rodillos cruzados, profundidad de rosca L3

Tamaño ²⁾	Medida	s (mm)											
	Ød	D	D_1	D_2	D_3	D_4	L	L ₁	L ₂	L ₃	S	S ₁	t
		h7	h7										
20	18,2	40	66	34	34	56	60_0,2	13	12	5,2	4,5	M4	7
25	23,0	50	78	40	42	68	70_0,3	16	13	6,4	4,5	M5	8
30	28,0	61	100	47	52	86	80_0,3	17	17	6,8	6,6	M6	10
40	37,4	76	120	62	64	104	100_0,3	20	23	8,0	9,0	M6	10

Tamaño ²⁾	Rodamien	to lineal Antigiro			Rodamient	o de rodillo	Par de apriete ⁴⁾		
	Momento	de torsión (Nm)	Caps. de d	carga ³⁾ (N)	Caps. de c	arga (N)	Revoluciones límite	Tornillo de fijación	
	din. M _t	estát. M _{to}	din. C	estát. C ₀	din. C	estát. C ₀	(rpm)		(Nm)
20	66	133	6200	11300	5900	7350	1200	M4	3,9
25	129	239	9800	16100	9110	11500	1000	M4	3,9
30	229	412	14800	23200	13200	18000	800	M6	12,7
40	500	882	24400	37500	22800	32300	600	M8	29,4

³⁾ Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la posición y la dirección de la carga no pueden definirse siempre claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Instrucciones de montaje: Juego radial: aprox. ± 5 μm;

Al introducir el eje, alinear las rodaduras y los retenes entre sí y no inclinarnos.

No aflojar el atornillado de la brida (rodamiento de rodillos cruzados).

Apretar los tornillos de fijación de forma escalonada según los valores de la tabla.

⁴⁾ Par de apriete en caso de factor de fricción 0,125

Rodamientos lineales para movimientos de rotación y traslación

Sinopsis del producto

Las ventajas

- Rodamientos lineales con rodamientos rígidos de bolas o rodamientos de agujas
- Guiado preciso con gran capacidad de carga
- Altas revoluciones y baja fricción
- Para aplicaciones lineales con rotaciones adicionales
- Para funciones basculantes o de tipo pinza
- Para aplicaciones angulares

Aclaración de la abreviación

Ejemplo de rodamiento lineal: Rodamiento lineal para movimientos de rotación y traslación (rotación) KBRON-30-DD

Definición de las abreviaciones		KE	BRO	N	30	DD
Tipo	Rodamiento lineal = I	(B				
Serie	Movimientos de rotación y traslación (rotación) = I	RO	_			
Forma constructiva	con rodamiento rígido de bolas (serie 618) = I	?				
	con rodamiento rígido de bolas (serie 60) = I	RD				
	con rodamiento de aguja = I	١				
Diámetro de eje	= (30			•	
Juntas	con 2 juntas = I	DD				_
	con 1 junta = I)				
	sin junta =					

Rodamientos lineales para movimientos de rotación y traslación

Rodamientos lineales para movimientos de rotación y traslación, R0663 con rodamiento rígido de bolas, serie 618

Rodamientos lineales para movimientos de rotación y traslación, R0664 con rodamiento rígido de bolas, serie 60

Construcción

- Con discos de obturación, estancos y libres de mantenimiento (serie 60, engrasado)

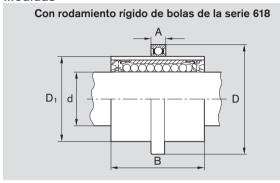
Diámetro de ejes de 12 a 40

- Rodamiento lineal Segmentario
- Casquillo de acero
- Retenes adicionales
- Rodamiento rígido de bolas presionado

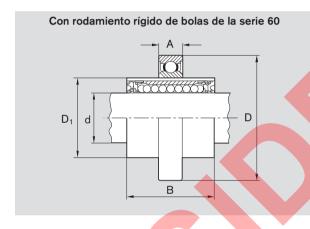
Diámetros de eje 5, 8, 50, 60 y 80

- Rodamiento lineal Estándar
- Retenes integrados
- Rodamiento rígido de bolas presionado

Eje	Referencias	Peso
Ød	con rodamiento rígido de bolas, serie 618	
(mm)	KBRORDD	(kg)
5	R0663 205 00	0,02
8	R0663 208 00	0,06
12	R0663 212 00	0,08
16	R0663 216 00	0,11
20	R0663 220 00	0,15
25	R0663 225 00	0,17
30	R0663 230 00	0,35
40	R0663 240 00	0,49
50	R0663 250 00	1,29
60	R0663 260 00	2,39
80	R0663 280 00	5,35


con rodamiento rígido de bolas, serie 60

Eje	Referencias	Peso
Ød	con rodamiento rígido de bolas, serie 60	
(mm)	KBRORDDD	(kg)
5	R0664 205 00	0,03
8	R0664 208 00	0,11
12	R0664 212 00	0,14
16	R0664 216 00	0,20
20	R0664 220 00	0,27
25	R0664 225 00	0,32
30	R0664 230 00	0,56
40	R0664 240 00	0,87
50	R0664 250 00	1,78
60	R0664 260 00	3,26


Ejemplo de aclaración de abreviación

KB	RO	R	20	DD
Rodamiento lineal	Movimientos de rotación y traslación (rotación)	Con rodamiento rígido de bolas	Ø 20	Con 2 juntas

Medidas

Medida	s (mm)				Caps. de carga ³⁾ (N)			
Ød	D	D_1	Α	В	С	C _o		
5	21	12 ¹⁾	5	22	180	140		
82)	32	20	7	25	320	240		
12	37	25	7	30	480	420		
16	42	30	7	34	720	620		
20	47	35	7	38	1020	870		
25	52	40	7	45	1630	1360		
30	65	50	7	54	2390	1960		
40	78	60	10	66	3870	3270		
50	95	75 ¹⁾	10	100	8260	6470		
60	115	90 ¹⁾	13	125	11500	9160		
80	150	120 ¹⁾	16	165	21000	16300		
	4							

Medida	s (mm)				Caps. de carga ³⁾ (N)		
Ød	D	D_1	Α	В	С	C _o	
5	28	12 ¹⁾	8	22	180	140	
82)	42	20	12	25	320	240	
12	47	25	12	30	480	420	
16	55	30	13	34	720	620	
20	62	35	14	38	1020	870	
25	68	40	15	45	1630	1360	
30	80	50	16	54	2390	1960	
40	95	60	18	66	3870	3270	
50	115	75 ¹⁾	20	100	8260	6470	
60	140	90 ¹⁾	24	125	11500	9160	

- 1) Con sobremedida.
- Entre el rodamiento y el rodamiento lineal Estándar hay un casquillo distanciador.
- Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la posición y la dirección de la carga no se pueden definir claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido. Si se basa en 50 000 m, se deber<mark>án multip</mark>licar los valores C según la tabla por 1,26.

Estanqueidad: Los rodamientos lineales están estanqueizados por ambos lados.

Serie R0663: Si el rodamiento rígido de bolas se estanqueiza con retenes, pida

nuestra tabla TB06-060-00.

Serie R0664: Todos los tamaños de rodamientos rígidos de bolas están estanqueizados

por ambos lados con discos de obturación y no requieren mantenimiento.

Tolerancias de montaje recomendadas

Serie R0663 y R0664: Eje: d_{h6}

Taladro de la carcasa D^K6 o D^K7

En casos especiales, cabe la posibilidad de elegir otro campo de tolerancia (véanse las recomendaciones de montaje de los fabricantes de rodamientos).



Temperaturas de servicio

De -10 °C a 80 °C

Lubricación inicial

A los rodamientos lineales para movimientos de rotación y traslación no se les aplica una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 21. Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.

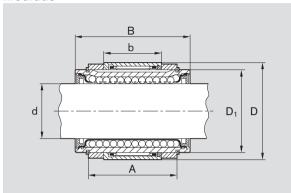
Rodamientos lineales para movimientos de rotación y traslación

Rodamientos lineales para movimientos de rotación y traslación, R0665 con rodamiento de agujas, sin junta

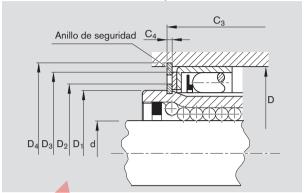
Rodamientos lineales para movimientos de rotación y traslación, R0667 con rodamiento de agujas, con junta

Construcción

- Rodamiento lineal Estándar (ejecución cerrada)
- Rodamiento de aguja
- Anillos intermedios de acero
- Anillos de seguridad


Eje	Referencia		Peso
Ød	con dos retenes	sin retén	
(mm)	KBRONDD	KBRON	(kg)
5	R0667 005 00	R0665 005 00	0,02
8	R0667 008 00	R0665 008 00	0,04
12	R0667 012 00	R0665 012 00	0,08
16	R0667 016 00	R0665 016 00	0,10
20	R0667 020 00	R0665 020 00	0,20
25	R0667 025 00	R0665 025 00	0,34
30	R0667 030 00	R0665 030 00	0,56
40	R0667 040 00	R0665 040 00	1,39
50	R0667 050 00	R0665 050 00	2,18
60	R0667 060 00	R0665 060 00	4,14
80	R0667 080 00	R0665 080 00	7,11

Ejemplo de aclaración de abreviación


KB	RO	N	20	DD
Rodamiento lineal	Movimientos de rotación y traslación (rotación	ón) Con rodamiento de aguja	Ø 20	Con 2 juntas

Encontrará más información acerca de la abreviación en Página 192.

Medidas

Recomendación de montaje

Medidas	s (mm)									Anillo de seguridad ³⁾ Caps. de carga ⁴				
Ød	D	D ₁	b	Α	В	D ₂	D ₃	D_4	C ₃	C ₄		С	Co	
								H11	H12	H13				
5	19	12,0	12,0	12,0	22	13,8	_	19,5	14,6	1,3	SB19	180	140	
8	24	16,0	13,0	14,1	25	19,3	23	24,8	16,5	1,3	SB24	320	240	
12	30	22,0	16,0	20,0	32	24,2	28	31,0	23,2	1,6	SB30	420	280	
16	34	26,0	20,0	22,1	36	28,4	32	35,0	25,3	1,6	SB34	580	440	
20	42	32,0	20,0	28,0	45	35,1	40	43,2	31,2	1,6	SB42	1170	860	
25	50	40,0	30,0	40,0	58	43,1	48	51,2	43,2	1,6	SB50	2080	1560	
30	57	47,0	30,0	48,0	68	49,1	55	58,5	51,2	1,6	SB57	2820	2230	
401)	80	62,22)	56,0	56,0	80	74,2	_	81,8	60,2	2,2	SB80	5170	3810	
50 ¹⁾	92	75,0	70,0	73,1	100	80,6	90	94,0	78,3	2,7	SB92	8260	6470	
60 ¹⁾	110	90,0	70,0	95,0	125	95,0	108	112,3	100,2	2,7	SB110	11500	9160	
80 ¹⁾	140	120,0	81,6	125,0	165	128,0	138	142,6	130,2	2,7	SB140	21000	16300	

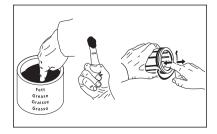
- 1) Al contrario de lo que se muestra en el dibujo, estos tamaños tienen dos rodamientos de agujas.
- 2) El cuerpo principal es una ejecución especial del rodamiento lineal Estándar cerrado.
- 3) Marca Seeger-Orbis GmbH
- 4) Las capacidades de carga indicadas corresponden a los valores mínimos, ya que la posición y la dirección de la carga no se pueden definir claramente.

El cálculo de capacidades de carga dinámicas se basa en 100 000 m de recorrido.

Si se basa en 50 000 m, se deberán multiplicar los valores C según la tabla por 1,26.

Tolerancias de montaje recomendadas:

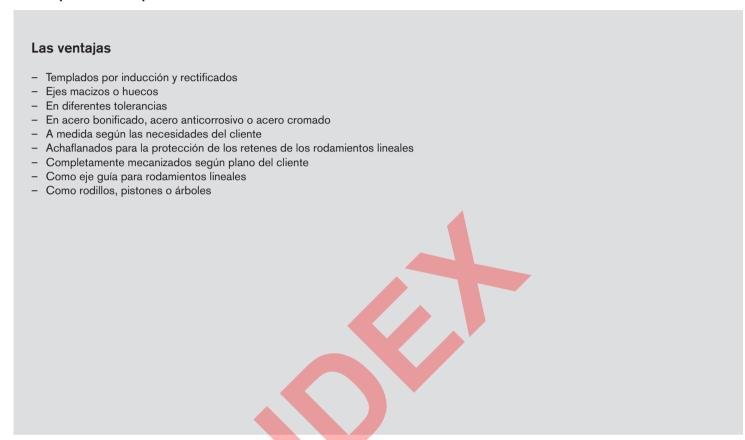
- Eje d_{h6}
- Taladro de la carcasa D^{K6} o D^{K7}
- En casos especiales, cabe la posibilidad de elegir otro campo de tolerancia (véanse las recomendaciones de montaje de los fabricantes de rodamientos).
- Para la fijación axial del rodamiento de agujas en la carcasa, véase la recomendación de montaje.
- En muchas aplicaciones basta con montar el rodamiento de bolas en la carcasa sin una fijación axial adicional.
- Rodamiento de agujas con juego axial en el rodamiento lineal Estándar

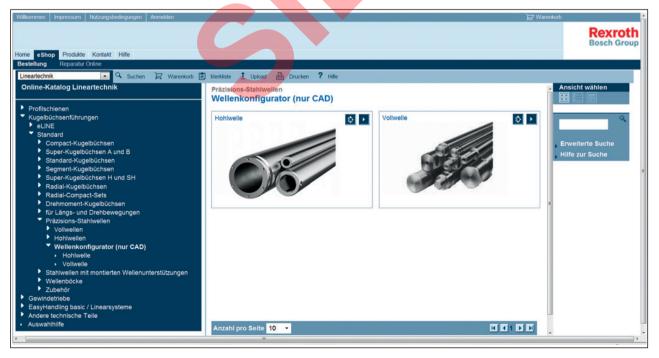

Temperaturas de servicio

De -10 °C a 80 °C

Lubricación inicial

A los rodamientos lineales para movimientos de rotación y traslación no se les aplica una lubricación inicial. Engrasar los rodamientos lineales antes de la puesta en servicio; véase "Primera lubricación" capítulo "Lubricación" en la página 21.


Los datos relativos a la duración de vida se refieren a rodamientos lineales con lubricación inicial y relubricación.



Ejes de acero de precisión y mecanizado de extremos de eje

Sinopsis del producto

Utilice el configurador de ejes para solicitar ejes mecanizados. www.boschrexroth.com/shaft-configuration

Sinopsis

Dimensiones

Eje	Referencias de ejes macizos								
Ød			Longitud	d Longitud					Longitud
	Acero bonificad	lo Cf53	máxima	X46Cr13		máxima	náxima X90CrMoV18		máxima
	h6 ¹⁾	h7 ¹⁾	utilizable	h6 ¹⁾	h7¹)	utilizable	h6 ¹⁾	h7¹)	utilizable
(mm)			(mm)			(mm)			(mm)
3	R1000 003 00	_	400	_	_		R1000 003 20	_	400
4	-	_	_	R1000 004 30	R1000 004 31	3450	_	_	_
5	R1000 005 00	R1000 005 01	5650	R1000 005 30	R1000 005 31	3450	-	-	_
6	R1000 006 00	R1000 006 01	5650	R1000 006 30	R1000 006 31	3450	-	-	_
8	R1000 008 00	R1000 008 01	5900	R1000 008 30	R1000 008 31	5900	_	_	_
10	R1000 010 00	R1000 010 01	5900	R1000 010 30	R1000 010 31	3450	_	_	_
12	R1000 012 00	R1000 012 01	5900	R1000 012 30	R1000 012 31	5900	R1000 012 20	R1000 012 21	5900
14	R1000 014 00	R1000 014 01	5900	R1000 014 30	R1000 014 31	5900	_	_	_
15	R1000 015 00	R1000 015 01	5900	_	-	-	_	-	_
16	R1000 016 00	R1000 016 01	5900	R1000 016 30	R1000 016 31	5900	R1000 016 20	R1000 016 21	5900
18	R1000 018 00	R1000 018 01	5900	_	_		-	_	_
20	R1000 020 00	R1000 020 01	5900	R1000 020 30	R1000 020 31	5900	R1000 020 20	R1000 020 21	5900
22	R1000 022 00	R1000 022 01	5900	_	-	_	+	-	_
24	R1000 024 00	R1000 024 01	5900	_	-	_	-	_	_
25	R1000 025 00	R1000 025 01	5900	R1000 025 30	R1000 025 31	5900	R1000 025 20	R1000 025 21	5900
30	R1000 030 00	R1000 030 01	5900	R1000 030 30	R1000 030 31	5900	R1000 030 20	R1000 030 21	5900
32	R1000 032 00	R1000 032 01	5900	_	-	-	-	_	_
35	R1000 035 00	R1000 035 01	5900	-	-	7	_	_	_
38	R1000 038 00	R1000 038 01	5900	-	-	-	_	_	_
40	R1000 040 00	R1000 040 01	5900	R1000 040 30	R1000 040 31	5900	R1000 040 20	R1000 040 21	5900
45	R1000 045 00	R1000 045 01	5900	-	_	ı	_	_	_
50	R1000 050 00	R1000 050 01	5900	R1000 050 30	R1000 050 31	5900	R1000 050 20	R1000 050 21	5900
55	R1000 055 00	R1000 055 01	5900	_	-	_	_	_	_
60	R1000 060 00	R1000 060 01	5900	R1000 060 30	R1000 060 31	5900	R1000 060 20	R1000 060 21	5900
70	R1000 070 00	R1000 070 01	5900	2	-	-	_	-	
80	R1000 080 00	R1000 080 01	5900	R1000 080 30	R1000 080 31	5900	R1000 080 20	R1000 080 21	5900
100	R1000 100 00	R1000 100 01	5900	-	_	_	_	_	_
110	R1000 110 00	R1000 110 01	5900	-	-	_	_	_	_

¹⁾ Otras tolerancias a petición

Eje	Referencias de	ejes macizo	os		Referencias de ejes huecos					
Ød	acero cromado	Cf53			acero bonificad	lo C60;		acero cromado	Cf53	
		Longitud		Longitud	Ø8, Ø10, Ø16: 1	00Cr6	Longitud		Longitud	
		máxima		máxima			máxima		máxima	
	h6	utilizable	h7	utilizable	h6	h7	utilizable	h7	utilizable	
(mm)		(mm)		(mm)						
3	_	_	_	-	_	_	_	_	_	
4	-	-	_	-	-	_	-	-	-	
5	-	_	-	-	-	_	_	-	-	
6	-	_	_	-	-	_	_	_	-	
8	-	_	-	-	R1001 008 10	-	1000	-	-	
10	_	_	_	_	R1001 010 10	_	1000	_	_	
12	R1000 012 60	5350	R1000 012 61	5350	R1001 012 10	R1001 012 11	5900	-	-	
14	R1000 014 60	5350	R1000 014 61	5350	-	-	_	-	-	
15	-	_	_	-	_	-	_	-	-	
16	R1000 016 60	6350	R1000 016 61	6350	R1001 016 10	R1001 016 11	2000	-	_	
18	-	_	_	-	- ,	-	_	-	-	
20	R1000 020 60	6450	R1000 020 61	6450	R1001 020 10	R1001 020 11	5900	_	_	
22	_	_	_	_	-	-	_	_	_	
24	_	_	_	_	-	-	_	_	_	
25	R1000 025 60	6850	R1000 025 61	6850	R1001 025 10	R1001 025 11	5900	R1001 025 41	5900	
30	R1000 030 60	6850	R1000 030 61	6850	R1001 030 10	R1001 030 11	5900	R1001 030 41	5900	
32	_	_	_	-	7	_	_	_	_	
35	_	_	_		-	_	_	_	_	
38	-	_	-	-	-	-	_	-	_	
40	R1000 040 60	6850	R1000 040 61	6850	R1001 040 10	R1001 040 11	5900	R1001 040 41	5900	
45	-	-	-	7	_	_	_	-	-	
50	R1000 050 60	6850	R1000 050 61	6850	R1001 050 10	R1001 050 11	5900	R1001 050 41	5900	
55	_	_	-	7	_	_	_	_	_	
60	R1000 060 60	6850	R1000 060 61	6850	R1001 060 10	R1001 060 11	5900	R1001 060 41	5900	
70	-	-	-	-	_	_	_	_	_	
80	R1000 080 60	6850	R1000 080 61	6850	R1001 080 10	R1001 080 11	5900	R1001 080 41	5900	
100	_	-		-	_	-	_	-	_	
110	-	_	-	_	-	-	_	-	_	

Datos de pedido

Ejes macizos de acero bonificado

El cometido del eje de precisión como componente del sistema de guiado exige una selección cuidadosa de los materiales utilizados.

Para cada rango de diámetros ofrecemos el material de eje óptimo.

La dureza superficial especialmente homogénea y la profundidad del temple de los ejes, así como el excelente grado de pureza, la estructura uniforme y el adecuado tamaño de granulación garantizan una elevadísima duración de vida como elemento mecánico en guías con rodamientos.

Diámetros disponibles (mm)
3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22,
24, 25, 30, 32, 35, 38, 40, 45, 50, 55, 60,
70, 80, 100, 110

Ø d (mm)	Longitudes (m)
3	0,4
5 y 6	5,8
desde 8	6,1

Ejes macizos a partir de diámetro 20 mm y hasta longitud 8 m a petición. Las longitudes totales mayores se componen de varias piezas parciales. Los rodamientos lineales trabajan sin problemas sobre las uniones.

Dureza
mín. 60 HRC
R1000 xxx 00
R1000 xxx 01

xxx = diámetro en mm

Ejemplo de pedido

Eje macizo Ø 25 h7 de acero bonificado, longitud 460 mm

Referencia:

R1000 025 01, 460 mm

Ejes macizos de acero anticorrosivo según ISO 683-17 / EN 10088

La elección correcta para aplicaciones que requieran alta resistencia a la corrosión y mucha limpieza, por ejemplo, en la industria alimenticia, producción de semiconductores y de equipamiento médico. El X 90 CrMoV 18 difiere del X 46 Cr 13, entre otros, por su resistencia al ácido láctico.

Materiales	diámetros disponibles (mm)
X 46 Cr13	4, 5, 6, 8, 10, 12, 14, 16, 20, 25, 30, 40, 50, 60, 80
X 90 CrMoV 18	3, 12, 16, 20, 25, 30, 40, 50, 60, 80

Ø d (mm)	Longitudes (m)
3	0,4
4 - 10	3,6
12 - 80	6.1

Las longitudes totales mayores se componen de varias piezas parciales. Los rodamientos lineales trabajan sin problemas sobre las uniones.

Materiales	Dureza
X 46 Cr 13	mín. 54 HRC
X 90 CrMoV 18	mín. 55 HRC

Referencias X 46 Cr 13		
Tolerancia h6	R1000 0xx 30	
Tolerancia h7	R1000 0xx 31	

Referencias X 90 CrMoV 18		
Tolerancia h6	R1000 0xx 20	
Tolerancia h7 R1000 0xx 21		

xx = diámetro en mm

Ejemplo de pedido:

Eje macizo Ø 16 h6 de acero anticorrosivo X 46 Cr 13, longitud 350 mm

Referencia:

R1000 016 30, 350 mm

Materiales

		Abreviación	Número de material
Acero bonificado	Eje macizo	Cf53	1.1213
	Eje hueco	C60	1.0601
Acero anticorrosivo según ISO 683-17 / EN 10088		X 46 Cr 13	1.4034
		X 90 CrMoV 18	1.4112

Ejes macizos, acero cromado

Protección anticorrosiva óptima para la superficie del diámetro exterior del eje.

Diámetros disponibles (mm)
12, 14, 16, 20, 25, 30, 40, 50, 60, 80

Ø d (mm)	Longitudes (m)
12, 14	5,35
16	6,35
20 - 80	6,85

Las longitudes totales mayores se componen de varias piezas parciales. Los rodamientos lineales trabajan sin problemas sobre las uniones.

Materiales	Dureza
Cf53, C60	mín. 60 HRC (aprox. 700 HV)
Capa de cromo (espesor aprox. 10 μm)	aprox. 1000 HV

Referencias	
Tolerancia h6	R1000 0xx 60
Tolerancia h7	R1000 0xx 61

xx = diámetro en mm

Ejemplo de pedido:

Eje macizo Ø 30 acero cromado h7, longitud 480 mm

Referencia: R1000 030 61, 480 mm

Ejes huecos de acero bonificado

Los ejes huecos se pueden utilizar como guiado de cables eléctricos y para la conducción de medios líquidos y gaseosos. A menudo, también se utilizan para ahorrar peso. El material está laminado sin costuras. El diámetro interno no está mecanizado.

Diámetros disponibles (mm)								
Exterior	Interior (aprox.)							
8		3,0						
10		4,0						
12		4,0						
16		8,0						
20		14,0						
25		14,0						
30		19,0						
40		26,5						
50		29,6						
60		36,5						
80		57,4						

Ø d (mm)	Longitudes máx. (m)
8, 10	1,0
16	2,0
12 y 20 - 80	6,1

Materiales	Dureza
C60	mín. 60 HRC

Referencias	
Tolerancia h6	R1001 xxx 10
Tolerancia h7	R1001 xxx 11

xxx = diámetro exterior en mm

Ejemplo de pedido:

Eje hueco Ø 80 h7, longitud 3600 mm

Dureza

mín. 60 HRC (aprox. 700 HV) aprox. 1000 HV

Referencia:

Materiales

Capaz de cromo Grosor aprox. 10 μm

C60

R1001 080 11, 3600 mm

Ejes huecos, acero cromado

Los ejes huecos están cromados en el diámetro exterior. Longitud: máx. 6,1 m

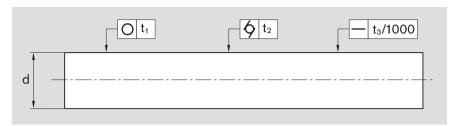
Diámetros disponibles (mm)							
Exterior	Interior (aprox.)						
25		14,0					
30		19,0					
40		26,5					
50		29,6					
60		36,5					
80		57,4					

Referencias	
Tolerancia h7	R1001 0xx 41

Ejemplo	de pedido:
	~

Eje hueco Ø 40, cromo duro h7, longitud 2000 mm

Referencia:

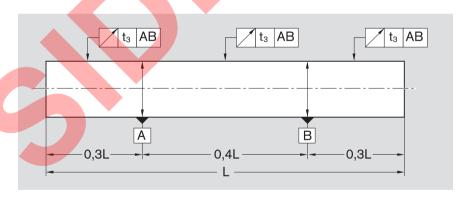

R1001 040 41, 2000 mm

xx = diámetro exterior en mm

Datos técnicos

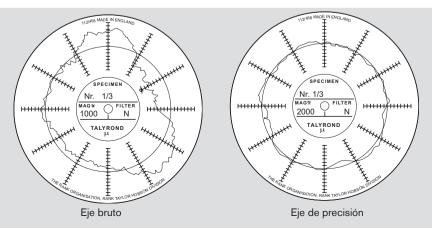
Precisión dimensional y campos de tolerancia

Los diámetros de los ejes de acero de precisión se ejecutan en los campos de tolerancia h6 y h7. La información relativa a la precisión dimensional está reunida en la tabla adyacente. La tolerancia del diámetro de las partes recocidas del eje es ligeramente diferente al campo de tolerancia indicado.



Rango de medidas	(mm)	sobre	1	3	6	10	18	30	50	80
nominales d		hasta	3	6	10	18	30	50	80	120
Tolerancia de diámetro	(μm)	h6	0	0	0	0	0	0	0	0
			-6	-8	-9	-11	-13	-16	-19	-22
		h7	0	0	0	0	0	0	0	0
			-10	4 12	-15	-18	-21	-25	-30	-35
Tolerancia de redondez t ₁	(μm)	h6	3	4	4	5	6	7	8	10
		h7	4	5	6	8	9	11	13	15
Tolerancia cilíndrica t ₂ 1)	(μm)	h6	4	5	6	8	9	11	13	15
		h7	6	8	9	11	13	16	19	22
Tolerancia de rectitud t ₃ ²⁾	(µm/m)		150	150	120	100	100	100	100	100
Rugosidad media (Ra)	(µm)		0,32	0,32	0,32	0,32	0,32	0,32	0,32	0,32

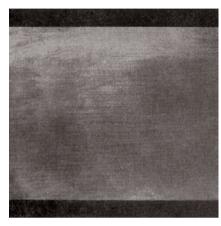
- 1) Medición de la diferencia del diámetro
- En longitudes por debajo de 1 m, el valor mínimo es 40 μm. La medición de rectitud se realiza sobre la base de ISO 13012.


Medición de rectitud sobre la base de ISO 13012.

Los puntos de medición están repartidos uniformemente entre los puntos de apoyo y las secciones de eje sobresalientes. Por lo tanto, en ejes largos y delgados deben utilizarse más soportes. La tolerancia de rectitud es la mitad del valor de redondez medido en un giro del eje de 360°

Medición de redondez

En el esquema se compara la redondez de un eje bruto con un eje de precisión.


Dureza del eje

La zona del eje está templada por inducción. Según el diámetro, la profundidad del temple varía entre 0,4 y 2,4 mm. La dureza de la superficie y la profundidad del temple son muy uniformes, tanto en sentido longitudinal como transversal. Esto garantiza una gran constancia de medidas y duración de vida prolongada del eje de acero de precisión.

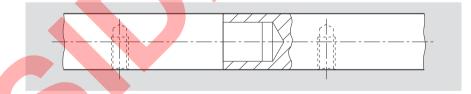
La figura adyacente muestra el corte transversal y longitudinal de un eje de acero de precisión templado y rectificado. La zona del temple queda a la vista pues se ha tratado con ácido.

Dureza superficial mínima

Eje Ø d (mm) s	obre	1	3	10	18	30	50	80
h	asta	3	10	18	30	50	80	120
Profundidad del temple (mm) n	nín.	0,4	0,4	0,6	0,9	1,5	2,2	2,4

Materiales	Dureza	
Cf53, C60	HRC 60	
X 46 Cr13	HRC 54	١
X 90 CrMoV 18	HRC 55	

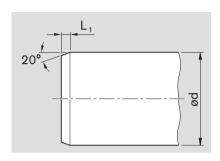
Datos técnicos


Longitudes de laminación

Ejecución del eje	Diámetro	Longitud de laminación	extremos no según medidas 1)
	(m)	(m)	Longitud (mm) (unilateral)
Ejes macizos 2)	3	0,4	
	5, 6	5,8	75
	desde 8	6,1	75
Ejes huecos	8, 10	1,0	
	16	2,0	
	12, desde 20	6,1	75
Ejes macizos de	3	0,4	
acero anticorrosivo	4 a 10	3,6	75
	desde 12	6,1	75

- 1) referido a geometría y dureza
- 2) Ejes macizos a partir de diámetro 20 mm y hasta longitud 8 m a petición.

Ejes ensamblados por unión


Si se necesitan ejes de acero cuya longitud sobrepasa las longitudes de laminación, los suministramos ensamblables. Para ello, se mecaniza una mecha en el extremo de uno de los ejes y un alojamiento en el extremo del otro eje (véase figura). El eje ensamblado debe estar sostenido por toda su longitud o cada cierta distancia, pero siempre en los lugares de unión (véase el apartado "Soportes de ejes"). Al fijarlo con los soportes de eje, deberá estar fijado axialmente para que no surja juego en el lugar de la unión. Los rodamientos lineales trabajan sin problemas sobre las uniones

Biselado

Los ejes de acero como guías redondas para rodamientos lineales deben achaflanarse en los extremos; de esta manera, al introducir los rodamientos lineales, no se dañarán las jaulas de bolas ni los retenes. La figura y la tabla muestran las dimensiones de los biseles.

Los rodamientos lineales con retenes no deben montarse sobre cantos vivos (por ejemplo, ranurados para anillos de seguridad), ya que los labios de estanqueidad podrían dañarse.

Eje Ø d	(mm)	3	4	5	8	10	12	14	16	20	25	30	40	50	60	80
utilizable	(mm)	1	1	1,5	1,5	1,5	2	2	2	2	2	2	3	3	3	3
de los chaflanes L																

Mecanizado

Los ejes de acero endurecidos y rectificados están disponibles en longitudes de laminación. Según sus necesidades, pueden cortarse y equiparse con

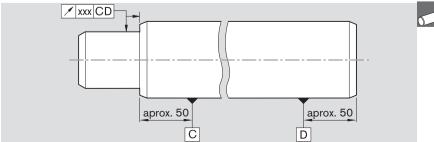
- muñones,
- roscas externas e internas,
- avellanados.

- taladros radiales y axiales,
- ranurados y
- otros mecanizados.

Los ejes recortados sin mecanizar, cuando no se disponga de otros datos de peligro, se dotan de biseles para evitar accidentes.

Recocido de zonas a mecanizar

Al mecanizar ejes, a causa de la dureza de la zona templada puede hacer necesario un recocido (es posible que las medidas sufran una pequeña variación)


Tolerancia de longitud para eies recortados

Dimensiones (mm)	
utilizable	Tolerancia
hasta 400	±0,5
sobre 400	±0,8
hasta 1000	
sobre 1000	±1,2
hasta 2000	
sobre 2000	±2,0
hasta 4000	
sobre 4000	±3,0
hasta 6000	
sobre 6000	±3,5
hasta 8000	

Con un coste adicional, se pueden fabricar ejes de acero con tolerancias de longitud menores.

Excentricidad y redondez de muñón

Si el cliente lo desea, se realiza una comprobación según el siguiente principio. Valores xxx < 0,02 a petición.

Datos técnicos

Flexión de eje

Cuando se utilizan ejes de acero como guías para rodamientos lineales, es necesario cerciorarse de que la flexión del eje que se genera a causa de la carga permanece dentro de ciertos límites. De lo contrario, la función y la duración de vida podrían verse perjudicadas.¹⁾

Con el propósito de facilitar el cálculo de las flexiones de eje, indicamos los casos de carga más habituales con sus correspondientes fórmulas de flexión.

En dicha tabla también figuran las fórmulas para calcular la inclinación del eje que se genera en el rodamiento lineal (tan α).

Caso N.º	Caso de aplicación de la carga	Fórmula de flexión	Inclinación del eje en el rodamiento lineal
1	x x x x x x x x x x x x x x x x x x x	$f_1 = \frac{F \cdot a^3}{6 \cdot E \cdot I} \cdot (2 - \frac{3 \cdot a}{L})$ $f_{m1} = \frac{F \cdot a^2}{24 \cdot E \cdot I} \cdot (3 \cdot L - 4a)$	$\tan \alpha_{(x=a)} = \frac{F \cdot a^2 \cdot b}{2 \cdot E \cdot I \cdot L}$
2	A L B	$f_2 = \frac{F \cdot L \cdot a^2}{2 \cdot E \cdot I} \cdot (1 - \frac{4}{3} \cdot \frac{a}{L})$ $f_{m2} = \frac{F \cdot L^2 \cdot a}{8 \cdot E \cdot I} \cdot (1 - \frac{4}{3} \cdot \frac{a^2}{L^2})$	$\tan \alpha_{(x=a)} = \frac{F \cdot a \cdot b}{2 \cdot E \cdot I}$
3		$f_3 = \frac{F \cdot a^3 \cdot b^3}{3 \cdot E \cdot I \cdot L^3}$ $f_{m3} = \frac{2 \cdot F \cdot a^3 \cdot b^2}{3 \cdot E \cdot I \cdot L^2} \cdot \left(\frac{L}{L + 2 \cdot a}\right)^2$	$\tan \alpha(_{x=b}) = \frac{F \cdot a^2 \cdot b^2}{2 \cdot E \cdot I \cdot L^2} \cdot (1 - \frac{2 \cdot b}{L})$
4		$f_4 = \frac{F \cdot a^2 \cdot b^2}{3 \cdot E \cdot I \cdot L}$ $f_{m4} = f_4 \cdot \frac{L + b}{3 \cdot b} \cdot \sqrt{\frac{L + b}{3 \cdot a}}$	$\tan \alpha(x=b) = \frac{F \cdot a}{6 \cdot E \cdot I \cdot L} \cdot (3 \cdot b^2 - L^2 + a^2)$
5	A B	$f_{m5} = \frac{5 \cdot F \cdot L^3}{384 \cdot E \cdot I}$	$\tan \alpha_{(x=0)} = \frac{F \cdot L^2}{24 \cdot E \cdot I}$

1) En los rodamientos lineales Super 💁, 🥶 y 🕮, hasta una inclinación del eje de 30' (tan 30' = 0,0087), la capacidad de carga o la vida útil no se ven reducidas.

La tabla contiene los valores del ángulo de inclinación máximo admisible (tan α_{max}) para rodamientos lineales Estándar.

En caso de tan $\alpha = \tan \alpha_{\max}$, la capacidad de carga estática admisible es de aprox. 0,4 C_0 .

Eje	tan α	α	α	α	
Ød					
(mm)		(10 ⁻³ °)	(°)	(min)	(seg.)
5	12,3	70,5	0,0705	4	14
8	10,0	57,3	0,0573	3	26
12	10,1	57,9	0,0579	3	28
16	8,5	48,7	0,0487	2	55
20	8,5	48,7	0,0487	2	55
25	7,2	41,3	0,0413	2	29
30	6,4	36,7	0,0367	2	12
40	7,3	41,8	0,0418	2	30
50	6,3	36,1	0,0361	2	10
60	5,7	32,7	0,0327	1	58
80	5,7	32,7	0,0327	1	58

Valores de E · I y peso para ejes de acero

Ejes macizos				
Ød	E·I	Peso		
(mm)	(N · mm²)	(kg/m)		
3	8,35 · 10 ⁵	0,06		
4	2,64 · 10 ⁶	0,10		
5	6,44 · 10 ⁶	0,15		
8	$4,22 \cdot 10^7$	0,39		
10	1,03 · 108	0,61		
12	2,14 · 10 ⁸	0,88		
14	3,96 · 10 ⁸	1,20		
16	6,76 · 10 ⁸	1,57		
20	1,65 · 10 ⁹	2,45		
25	4,03 · 109	3,83		
30	8,35 · 10 ⁹	5,51		
40	2,64 · 10 ¹⁰	9,80		
50	6,44 · 10 ¹⁰	15,32		
60	1,34 · 10 ¹¹	22,05		
80	4,22 · 10 ¹¹	39,21		

Ejes huecos					
Diámetro	del eje	E∙I	Peso		
Exterior	interior				
(mm)	(mm)	(N·mm²)	(kg/m)		
8	3,0	4,14 · 10 ⁷	0,34		
10	4,0	1,00 · 10 ⁸	0,51		
12	4,0	2,11 · 10 ⁸	0,79		
16	8,0	6,33 · 10 ⁸	1,18		
20	14,0	1,25 · 10 ⁹	1,25		
25	14,0	3,63 · 10 ⁹	2,63		
30	19,0	7,01 · 10 ⁹	3,30		
40	26,5	$2,13 \cdot 10^{10}$	5,50		
50	29,6	$5,65 \cdot 10^{10}$	9,95		
60	36,5	1,15 · 10 ¹¹	13,89		
80	57,4	$3,10 \cdot 10^{11}$	19,02		

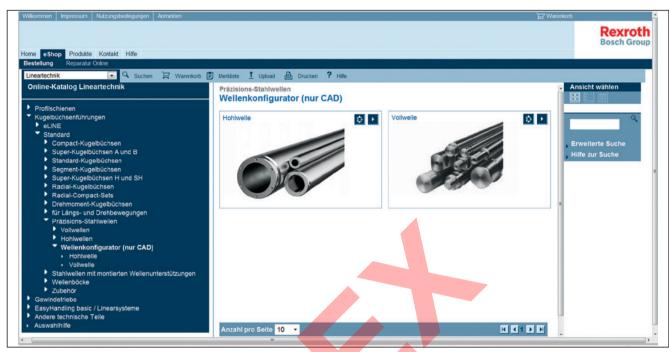
Valores de cálculo:

Módulo de elasticidad = 2,1· 10⁵ N/mm² Densidad 7,8 g/cm³ 210

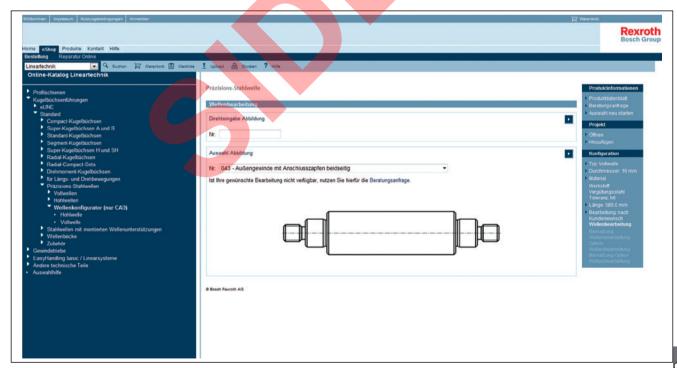
Configurador de ejes

Configurador de ejes en Rexroth eShop

Para consultar productos directamente, Rexroth ofrece un configurador de productos en Internet. En "www.boschrexroth.com/shaft-configuration" puede configurar soluciones específicas rápida y sencillamente.


Esta nueva herramienta online le permite configurar, paso a paso y mediante imágenes, los ejes que mejor se ajusten a sus necesidades Para ello, pueden seleccionarse todas las opciones disponibles en el catálogo.

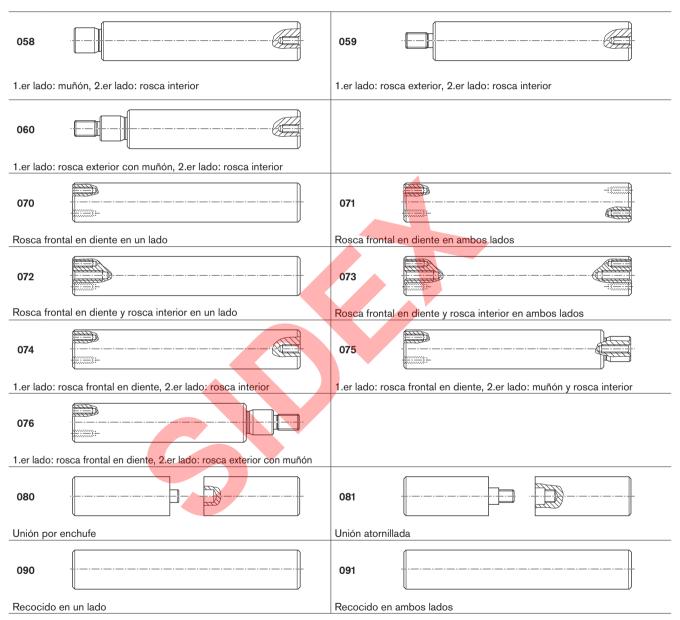
Una vez finalizada la configuración, los datos 2D y 3D pueden descargarse en los formatos más habituales.


Si desea ser informado acerca de precios y plazos de entrega, envíenos una solicitud de asesoramiento a través de la herramienta online.

Las imágenes tan solo muestran una pequeña parte de la gran variedad de posibilidades de mecanizado que ofrecemos. Rexroth mecanizar los extremos de los ejes según sus requerimientos. Envíenos su solicitud.

En la eShop, cambie al submenú "Configurador de ejes"

En caso de que tenga el catálogo a mano, en el punto de menú "Mecanizado según pedido del cliente – acceso rápido" puede introducir directamente el número de imagen del mecanizado. Si no tiene un catálogo a mano, en el punto de menú "Mecanizado según pedido del cliente" puede seleccionar, paso por paso, todas las opciones disponibles para el mecanizado de ejes.

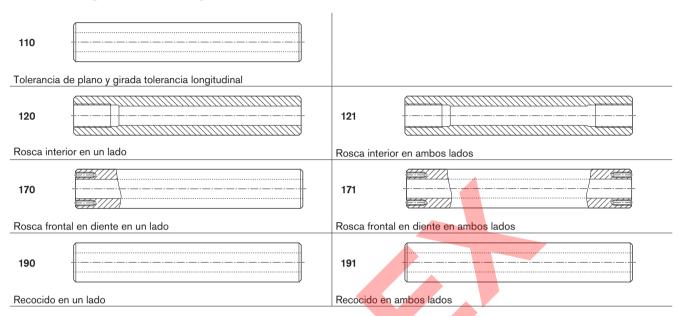

Mecanizado de ejes estándar

Ejes macizos

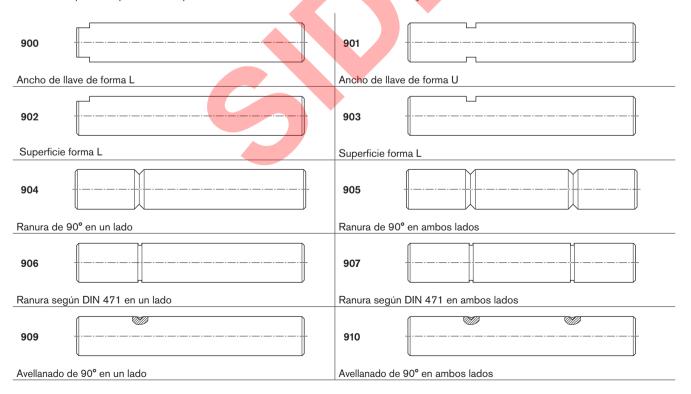
Mecanizado según número de imagen

010 Tolerancia	de plano y girada tolerancia longitudinal		
020	rior en un lado	021	
022	error en un lado	023	en ambos lados
Rosca inte	rior DIN 332-D un lado	Rosca interior	DIN 332-D en ambos lados
030			
Rosca rad	ial		
031		032	
Rosca rad	ial y rosca interior en un lado	Rosca radial y	rosca interior en ambos lados
040		041	
Rosca exte	erior en un lado	Rosca exterior	r en ambos lados
042		043	
Rosca exte	erior con muñón de conexión en un lado	Rosca exterior	r con muñón en ambos lados
050		051	
Muñón en	un lado	Muñón en ami	bos lados
052		053	
Muñón y re	osca interior en un lado	Muñón y rosca	a interior en ambos lados
054		055	
1.er lado:	muñón, 2.er lado: rosca exterior	1.er lado: muñ	ión, 2.er lado: rosca exterior con muñón
056		057	
1.er lado:	muñón y rosca interior, 2.er lado: rosca exterior	1.er lado: muñ	ión y rosca interior, 2.er lado: rosca exterior con muñón

Ejes macizos Mecanizado según número de imagen


Solo se muestra una pequeña parte de nuestra gran variedad de posibilidades de mecanizado. Otros mecanizados a petición.

Mecanizados de ejes


Eies huecos

Mecanizado según número de imagen

Opciones

Con estas opciones pueden completarse adicionalmente los mecanizados de eje estándar mostrados arriba.

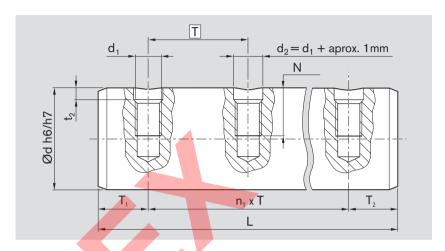
Solo se muestra una pequeña parte de nuestra gran variedad de posibilidades de mecanizado. Otros mecanizados a petición.

Ventajas

- Gran variedad de posibilidades de mecanizado
- Plazos de entrega breves
- Bajos costes

Ejes con taladros radiales con o sin rosca

Cuando los ejes de acero deben ser soportados, son necesarios taladros radiales. Los taladros radiales se realizan en ejes de acero que ya han sido templados y rectificados.

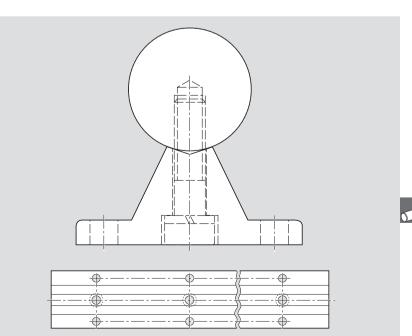

El diámetro, la profundidad y la distancia de los taladros dependen del diámetro del eje.

Los valores orientativos están recogidos en el capítulo "Ejes de acero con soportes montados".

Valores orientativos para el taladrado libre en la zona templada

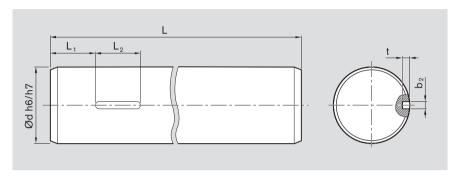
Pedido

- Solicitud con planos de cliente o
- utilizar el configurador de ejes
 www.boschrexroth.com/shaft-configuration



Medidas (mm)			
Ød	d ₁	t ₂	
12	M4	2,5	
16	M5	2,5	
20	M6	3,0	
25	M8	3,0	
30	M10	3,5	
40	M10	4,0	
40	M12	4,5	

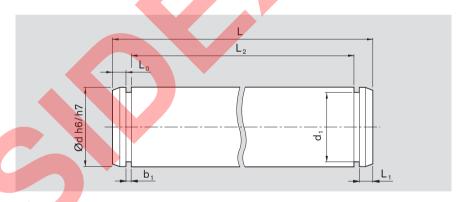
Medidas (mm)		
Ød	d₁	t ₂
50	M12	4,0
50	M14	4,5
50	M16	5,0
60	M14	5,5
60	M20	6,5
80	M16	5,5
80	M24	6,5


Valores para ejes de acero anticorrosivo a petición.

Soportes de eje adecuados, véase capítulo "Ejes de acero con soportes de ejes montados".

Mecanizados de ejes (recomendación)

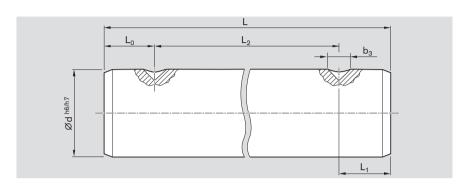
Chavetero según DIN 6885-1



Medidas recomendadas:

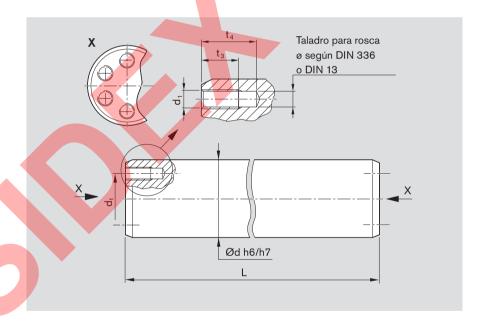
Medidas (mm)			
Eje	b ₂	t	
Ød	P9		
8	2	1,2 +0,1	
10	3	1,8 +0,1	
12	4	2,5 +0,1	
14	5	3,0 +0,1	
16	5	3,0 +0,1	
20	6	3,5 +0,1	

Medidas (mm)			
Eje	е	b ₂	t
	Ød	P9	
	25	8	4,0 +0,2
	30	8	4,0 +0,2
	40	12	5,0 ^{+0,2} 5,5 ^{+0,2}
	50	14	5,5 +0,2
	60	18	7,0 +0,2
	80	22	9,0 +0,2


Ranura para anillo de seguridad según DIN 471

Medidas recomendadas

Medida	as (mm)		Anillo de seguridad DIN 471-		
Ød	b ₁	d ₁	Medidas (mm)	Referencias	
	+0,1				
4	0,50	3,8 -0,04	4x0,4	R3410 765 00	
5	0,70	4,8 -0,04	5x0,6	R3410 742 00	
8	0,90	7,6 -0,06	8x0,8	R3410 737 00	
10	1,10	9,6 -0,11	10x1	R3410 745 00	
12	1,10	11,5 -0,11	12x1	R3410 712 00	
14	1,10	13,4 -0,11	14x1	R3410 747 00	
16	1,10	15,2 -0,11	16x1	R3410 713 00	
20	1,30	19 -0,13	20x1,2	R3410 735 00	
25	1,30	23,9 -0,21	25x1,2	R3410 750 00	
30	1,60	28,6 -0,21	30x1,5	R3410 724 00	
40	1,85	37,5 -0,25	40x1,75	R3410 726 00	
50	2,15	47,0 -0,25	50x2	R3410 727 00	
60	2,15	57,0 -0,30	60x2	R3410 764 00	
80	2,65	76,5 -0,30	80x2,5	_	


Avellanado de 90°

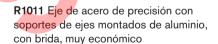
Medidas recomendadas

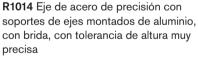
	Medi	das (m	nm)											
Ød	4	5	8	10	12	14	16	20	25	30	40	50	60	80
b ₃	_	3	4	5	5	4 5	5	5	6	6	8	8	8	10

Rosca interior en diente

Ejes de acero con soportes de eje montados, soportes de eje

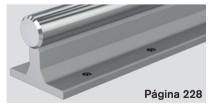
Sinopsis del producto

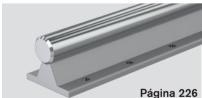

Las ventajas

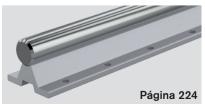

- Para la utilización con rodamientos lineales abiertos
- Para grandes longitudes de guiado o grandes cargas que, a causa de la flexión del eje, no permitan un eje sin soportes
- Permite longitud ilimitada mediante ejes con conexión por acoplamiento
- Soportes adecuados para diferentes requerimientos
- Posee grado de libertad adicional en dirección circunferencial frente a sistemas de guiado con patines y raíles
- Para aplicaciones en las que otros guiados lineales podrían sufrir precargas adicionales a causa de estructuras de soporte imprecisas

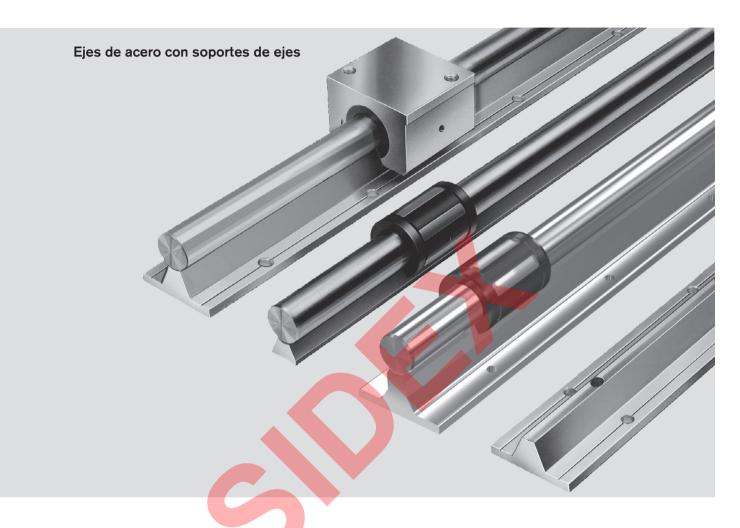
Generalidades

Los diferentes soportes se colocan debajo del eje correspondiente separados solo por juntas de montaje. Después de la alineación y el montaje de las unidades de guiado sobre una estructura base plana y rígida, se ajustan las tolerancias recogidas en las tablas de medidas.


R1010 Eje de acero de precisión con soportes de ejes montados de aluminio, con brida, muy económico







R1025 como R1010, pero con distancia entre taladros para sistemas de perfil

R1015 Eje de acero de precisión con soportes de ejes montados de aluminio, montaje lateral

R1013 Eje de acero de precisión con soporte de eje montado de aluminio, sin brida, muy económico

R1016 Eje de acero de precisión con soporte de eje montado de acero, sin brida, con borde de referencia

Página 232

Página 234

R1012

Soportes de ejes para set Radial Compacto y rodamiento lineal Radial:

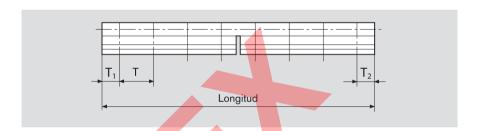
Página 148

Página 156

Sidex Suministros, S.L: Polígono Industrial El Tiro, s/n. 30100 Murcia. Teléfono: 968 306 000. E-mail: info@sidex.es

R1018

Ejes de acero con soportes de ejes montados


Construcción, datos de pedido, montaje

Distancias iniciales y finales $T_1 y T_2$

Si la longitud del eje pedido corresponde al múltiplo entero de la división de taladrado de un soporte de eje, las distancias iniciales y finales corresponden a media longitud de división (T_1 y $T_2 = T/2$). Para otras longitudes, los taladros los dividiremos nosotros $(T_1 = T_2)$. Ello se lleva a cabo cortando los posibles extremos excedentes de los soportes de ejes. Ambas distancias finales T₁ y T₂ no deben superar una medida de 0,2 x T. A no ser que exista un croquis del cliente, en nuestras ofertas y confirmaciones de pedido indicaremos las distancias entre taladros establecidas por nosotros para el eje de acero. De ello resulta la posición de los taladros de fijación en la bancada de la máquina.

Recomendamos comparar estos datos con los planos de construcción.

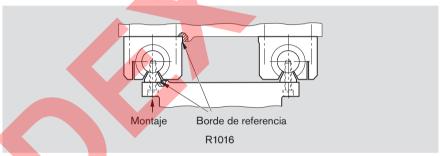
Datos de pedido: Referencia R10.. / longitud ... mm / T_1 ... mm / T_2 ... mm

Sobremedidas y unidades de quiado ensambladas

La longitud total de una pieza de eje con soporte de eje montado no debe exceder de 6 metros.

Las longitudes mayores se fabrican ensamblando varios tramos de eje (véase el apartado "Ejes ensamblados, unión").

La disposición de los empalmes del eje y los soportes del eje depende del tipo de eje. No obstante, en términos generales, los empalmes del eje y la junta del soporte del eje no deben coincidir.


Distancias especiales entre taladros

Instrucciones de montaje para soportes de ejes sin brida

Los ejes con soportes de ejes montados también se suministran con distancias especiales entre taladros según los requerimientos del cliente.

Para facilitar el montaje y en caso de cargas laterales elevadas, recomendamos la fijación con una regleta en forma de cuña o una regleta de presión según la figura de abajo.

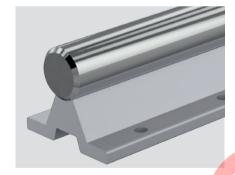
Al montarlo, el soporte del eje debe quedar recto.

Para ello, el primer eje con soporte de eje debe presionarse y atornillarse en el borde de referencia; seguidamente alinear y atornillar el segundo eje con su soporte, preferentemente con una regla.

Estos elementos solo están disponibles con ejes de acero de precisión.

La longitud máxima de estos soportes de eje es 1800 mm; para longitudes mayores es posible empalmar tramos. Gracias al borde de referencia, los soportes de eje pueden alinearse muy fácilmente y evitarse precargas adicionales en los rodamientos lineales.

con brida

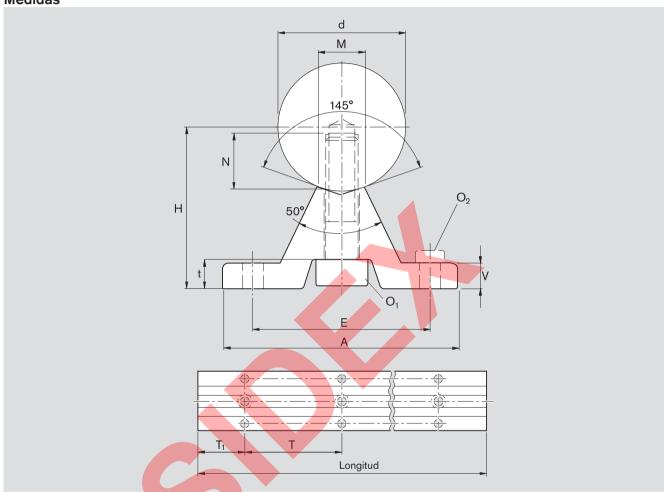

R1010 Eje de acero montado con soportes de eje

Material

- Soportes de eje: aluminio

Construcción

- En combinación con sets lineales, estos soportes de eje permiten realizar guiados lineales con alturas muy reducidas.
- Gran rigidez
 Gracias al ajuste preciso del soporte al correspondiente tamaño de rodamiento lineal se consigue un ángulo de presión óptimo para el apoyo del eje que, junto con los grandes tornillos de fijación, garantiza una gran rigidez.
- Muy económico



Eje	Referencias		Peso
Ød	Distancia entre taladros ti	po1 Distancia entre taladros tipo2	
(mm)			(kg/m)
16	R1010 016	R1010 516	2,5
20	R1010 020	R1010 520	3,8
25	R1010 025	R1010 525	5,4
30	R1010 030	R1010 530	7,6
40	R1010 040	R1010 540	12,6

Ejemplo de pedido:

Diámetro de eje 30 mm, h7, acero bonificado, longitud 900 mm, montado con soporte de eje tipo1:

R1010 030 01 / 900 mm.

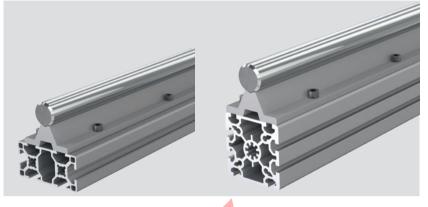
Medid	as (mm)										
Ød	H ¹⁾	Α	V	M	O ₁	N	E	t	O ₂ ²⁾		T ³⁾
	±0,1				DIN6912-8.8				DIN6912-8.8	Tipo1	Tipo2
16	26	45	5	7,0	M5x20	9	33	6,0	M5x16	100	150
20	32	52	6	8,3	M6x25	11	37	7,0	M6x16	100	150
25	36	57	6	10,8	M8x30	15	42	7,0	M6x16	120	200
30	42	69	7	11,0	M10x35	17	51	7,5	M8x25	150	200
40	50	73	8	15,0	M10x40	19	55	7,0	M8x25	200	300

¹⁾ Medido con eje de prueba, medida nominal "d" y longitud de aprox. 50 mm. A petición, hasta 1800 mm de longitud con un paralelismo de 0,1 mm.

²⁾ Solo válido para el atornillado en roscas de acero o de fundición.

³⁾ Tipo1: Para cargas transversales con respecto a la abertura del rodamiento lineal y aprovechamiento prácticamente total de las capacidades de carga. Tipo2: Para exigencias generales.

para sistemas de perfiles


R1025 Eje de acero montado con soportes de eje¹⁾

Material

- Soportes de eje: Aluminio

Construcción

- Construcción modular rápida y sencilla de rodamientos lineales sobre sistemas de perfiles
- Muy económico gracias a la tolerancia de altura precisa

Eje	Medida	Referencias		Peso	
Ød	base E				
(mm)	(mm)			(kg	/m)
20	40	R1025 020			3,8
25	40	R1025 025			5,4
30	45	R1025 530			7,5
30	50	R1025 030			7,5

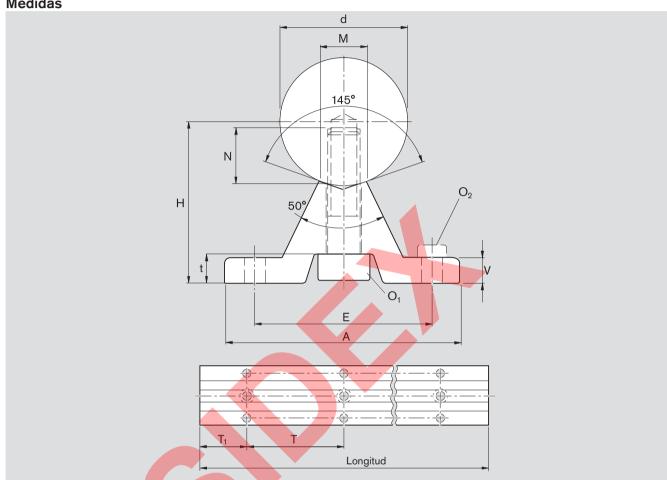

00 = acero bonificado h6 -01 = acero bonificado h7 -30 = acero anticorrosivo h6 31 = acero anticorrosivo h7 60 = acero bonificado cromado h6 -61 = acero bonificado cromado h7

1) Ejemplo de pedido:

Diámetro de eje 25 mm, h7, acero bonificado, longitud 900 mm, montado con soporte de ejes se pide como:

R1025 025 01 / 900 mm.

R1039 Soporte de ejes taladrado



Eje	Medida	Referencias	Peso	Longitud
Ød	base E			
(mm)	(mm)		(kg/m)	(mm)
				-0,5
				-1,5
20	40	R1039 820 30	1,3	1800
25	40	R1039 825 30	1,6	1800
30	45	R1039 930 30	2,0	1800
30	50	R1039 830 30	2,0	1800

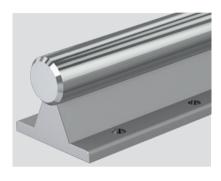
R1039 Soporte de ejes sin taladrar

Eje	Referencias	Peso	Longitud
Ød		(kg/m)	(mm)
(mm)			-0,5
			-1,5
20	R1039 520 30	1,3	1800
25	R1039 525 30	1,6	1800
30	R1039 530 30	2,0	1800

Medidas	(mm)										
Ø	d	H ¹⁾	Α	V	M	O ₁	N	E	t	O ₂	Т
		±0,1				DIN6912-8.8		Medida base		DIN6912-8.8	
2	.0	32	52	6	8,3	M6x25	11	40	7,0	M6	180
2	.5	36	57	6	10,8	M8x30	15	40	7,0	M6	180
3	0	42	69	7	11,0	M10x35	17	45	7,5	M8	180
3	0	42	69	7	11,0	M10x35	17	50	7,5	M8	180

¹⁾ Medido con eje de prueba, medida nominal "d" y longitud de aprox. 50 mm. A petición, hasta 1800 mm de longitud con un paralelismo de 0,1 mm.

Para sistemas de perfiles véase catálogo "Elementos básicos de mecánica".



con brida, tolerancia de altura muy precisa

R1014 Eje de acero montado con soportes de eje

Material

- Soportes de eje: aluminio

Construcción

- En combinación con sets lineales, estos soportes de eje permiten realizar guiados lineales con alturas muy reducidas.
- Gran rigidez

Gracias al ajuste preciso del soporte al correspondiente tamaño de rodamiento lineal se consigue un ángulo de presión óptimo para el apoyo del eje que, junto con los grandes tornillos de fijación, garantiza una gran rigidez.

Eje	Referencias		Peso
Ø d (mm)	Tipo1	Tipo2	(kg/m)
12	R1014 012	R1014 512	1,75
16	R1014 016	R1014 516	2,65
20	R1014 020	R1014 520	3,95
25	R1014 025	R1014 525	5,6
30	R1014 030	R1014 530	7,9
40	R1014 040	R1014 540	12,8
50	R1014 050	R1014 550	19,4
60	R1014 060	-	27,3
80	R1014 080	-	47,3

Ejes:

00 = acero bonificado h6

01 = acero bonificado h7

30 = acero anticorrosivo h6

31 = acero anticorrosivo h7

60 = acero bonificado cromado h6

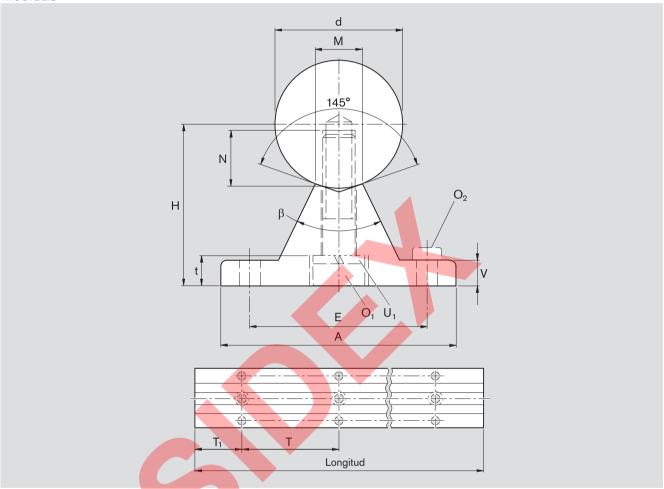
61 = acero bonificado cromado h7

Ejemplo de pedido:

Diámetro de eje 30 mm, h6, acero bonificado, longitud 1200 mm, montado con soportes del eje tipo 1 R1050 630 00 se pide como:

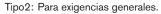
R1014 030 00 / 1200 mm.

R1050 Soportes de eje taladrados, longitud (mm) 600-0,5



Eje	Referencias		Peso
Ød	Tipo 1	Tipo 2	
(mm)			(kg/m)
12	R1050 612 00	R1050 712 00	0,52
16	R1050 616 00	R1050 716 00	0,64
20	R1050 620 00	R1050 720 00	0,90
25	R1050 625 00	R1050 725 00	1,08
30	R1050 630 00	R1050 730 00	1,43
40	R1050 640 00	R1050 740 00	1,81
50	R1050 650 00	R1050 750 00	2,45
60	R1050 660 00	_	3,16
80	R1050 680 00	_	4,86

R1050 Soporte de ejes sin taladrar, longitud (mm) 600-0.5



Eje	Referencias	Peso
Ød		
(mm)		(kg/m)
12	R1050 512 00	0,52
16	R1050 516 00	0,64
20	R1050 520 00	0,90
25	R1050 525 00	1,08
30	R1050 530 00	1,43
40	R1050 540 00	1,81
50	R1050 550 00	2,45
60	R1050 560 00	3,16
80	R1050 580 00	4,86

Medid	as (mm)												Ángulo
Ød	H ¹⁾	Α	V	M	01	N	U ₁	E	t	O ₂ ³⁾		T ⁴⁾	β
	±0,01				DIN6912-8.8		DIN7980 ²⁾			DIN6912-8.8	Tipo1	Tipo2	(°)
12	22	40	5	5,8	M4x20	8	4	29	4,5	M4x12	75	120	50
16	26	45	5	7,0	M5x20	9	5	33	7,6	M5x16	100	150	50
20	32	52	6	8,3	M6x25	11	6	37	8,6	M6x16	100	150	50
25	36	57	6	10,8	M8x30	15	8	42	9,0	M6x16	120	200	50
30	42	69	7	11,0	M10x35	17	10	51	10,0	M8x25	150	200	50
40	50	73	8	15,0	M10x40	19	10	55	9,5	M8x25	200	300	50
50	60	84	9	19,0	M12x45	21	12	63	11,5	M10x30	200	300	46
60	68	94	10	25,0	M14x50	25	14	72	13,0	M10x30	300	_	46
80	86	116	12	34,0	M16x60	28	16	92	15,0	M12x35	300	_	46

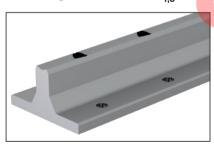
- 1) Medido con eje de prueba, medida nominal "d" y longitud de aprox. 50 mm.
- 2) DIN 7980 retirado. Arandelas elásticas disponibles en su comercio.
- 3) Solo válido para el atornillado en roscas de acero o de fundición.
- 4) Tipo1: Para cargas transversales con respecto a la abertura del rodamiento lineal y utilización prácticamente total de las capacidades de carga, así como grandes requerimientos de precisión dimensional.

R1011 Eje de acero montado con soportes del eje

Material

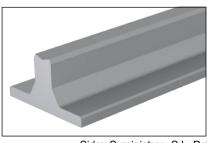
- Soportes de eje: Aluminio

Eje	Referencias		Peso
Ød	Tipo1	Tipo2	
(mm)			(kg/m)
12	R1011 012	R1011 512	1,95
16	R1011 016	R1011 516	2,80
20	R1011 020	R1011 520	4,10
25	R1011 025	R1011 525	5,90
30	R1011 030	R1011 530	8,50
40	R1011 040	R1011 540	13,30
50	R1011 050	R1011 550	20,30

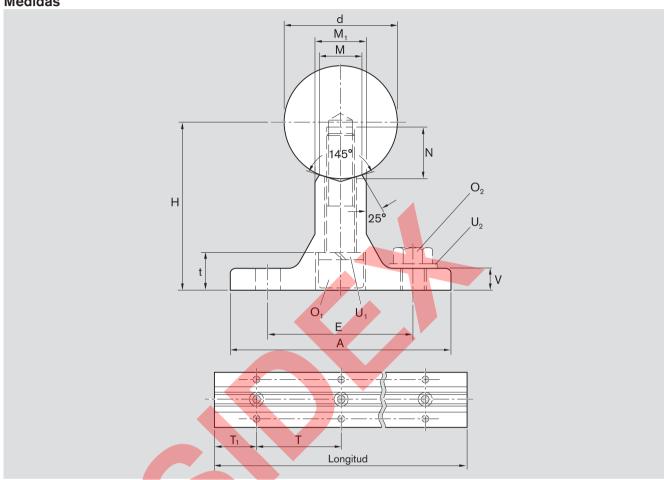

00 = acero bonificado h6 01 = acero bonificado h7 30 = acero anticorrosivo h6 31 = acero anticorrosivo h7 60 = acero bonificado cromado h6 61 = acero bonificado cromado h7

Ejemplo de pedido:

Diámetro de eje 40 mm, h7, acero anticorrosivo, longitud 1100 mm, montado con soporte de ejes tipo 2 R1050 240 00 se pide como:


R1011 540 31 / 1100 mm.

R1050 Soportes de eje taladrados, longitud (mm) 600-0.5



Eje	Referencias		Peso
Ød	Tipo1	Tipo2	
(mm)			(kg)
12	R1050 112 00	R1050 212 00	0,64
16	R1050 116 00	R1050 216 00	0,74
20	R1050 120 00	R1050 220 00	1,00
25	R1050 125 00	R1050 225 00	1,20
30	R1050 130 00	R1050 230 00	1,80
40	R1050 140 00	R1050 240 00	2,10
50	R1050 150 00	R1050 250 00	3,00

R1050 Soporte de ejes sin taladrar, longitud (mm) 600^{-0,5}

Eje	Referencias	Peso
Ød	sin taladrar	
(mm)		(kg)
12	R1050 012 00	0,64
16	R1050 016 00	0,74
20	R1050 020 00	1,00
25	R1050 025 00	1,20
30	R1050 030 00	1,80
40	R1050 040 00	2,10
50	R1050 050 00	3,00

Medida	s (mm)		`											
Ød	H ¹⁾	Α	V	M	M_1	O ₁	U ₁	N	E	t	O ₂ ³⁾	U_2	T ⁴⁾	
	±0,05			4		ISO 4762-8.8	DIN7980 ²⁾				ISO 4762-8.8	DIN125	Tipo1	Tipo2
											o bien			
											ISO 4017-8.8			
12	28	43	5	5,8	9	M4x25	4	8	29	5,5	M4x12	4	75	120
16	30	48	5	7,0	10	M5x25	5	9	33	7,0	M5x16	5	100	150
20	38	56	6	8,3	11	M6x30	6	11	37	9,6	M6x16	6	100	150
25	42	60	6	10,8	14	M8x35	8	15	42	11,0	M6x16	6	120	200
30	53	74	8	11,0	14	M10x40	10	17	51	14,0	M8x25	8	150	200
40	60	78	8	15,0	18	M10x45	10	19	55	13,5	M8x25	8	200	300
50	75	90	10	19,0	22	M12x55	12	21	63	16,0	M10x30	10	200	300

- 1) Medido con eje de prueba, medida nominal "d" y longitud de aprox. 50 mm.
- 2) DIN 7980 retirado. Arandelas elásticas disponibles en su comercio.
- 3) Solo válido para el atornillado en roscas de acero o de fundición.
- 4) Tipo1: Para cargas transversales con respecto a la abertura del rodamiento lineal y utilización prácticamente total de las capacidades de carga, así como grandes requerimientos de precisión dimensional.

Tipo2: Para exigencias generales.

montaje lateral

R1015 Eje de acero montado con soportes del eje

R1054 Soportes de ejes

Tipo 1

Material

- Soportes de eje: aluminio

Construcción

- En combinación con sets lineales con abertura lateral, permite un guiado lineal con mucha capacidad de carga
- El borde de referencia facilita la alineación (montaje)

Eje	Referencias	Peso	Referencias	Peso
Ød				
(mm)		(kg)		(kg)
20	R1015 020	4,1	R1054 120 00	1,0
25	R1015 025	6	R1054 125 00	1,3
30	R1015 030	8,7	R1054 130 00	1,9
40	R1015 040	14,3	R1054 140 00	2,7
50	R1015 050	21,5	R1054 150 00	3,7

Ejes:

00 = acero bonificado h6

01 = acero bonificado h7


30 = acero anticorrosivo h6

31 = acero anticorrosivo h7

60 = acero bonificado cromado h6

61 = acero bonificado cromado h7

Tipo 2

R1054 2, longitud (mm) 600-0,5/-1,5

Eje	Referencias	Peso	Referencias	Peso
Ød				
(mm)		(kg)		(kg)
20	R1015 520	4,3	R1054 220 00	1,1
25	R1015 525	6,3	R1054 225 00	1,5
30	R1015 530	9	R1054 230 00	2,1
40	R1015 540	14,8	R1054 240 00	3,0
50	R1015 550	22,3	R1054 250 00	4,2

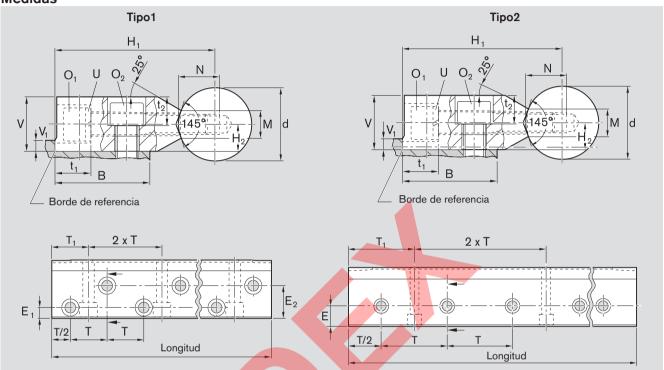
Ejes:

— 00 = acero bonificado h6

— 01 = acero bonificado h7

— 30 = acero anticorrosivo h6

— 31 = acero anticorrosivo h7


— 60 = acero bonificado cromado h6

— 61 = acero bonificado cromado h7

Ejemplo de pedido:

Diámetro de eje 30 mm, h6, acero bonificado, longitud 1200 mm, montado con soporte de ejes tipo1 R1054 130 00 se pide como:

R1015 030 00 / 1200 mm.

Soporte de ejes tipo1

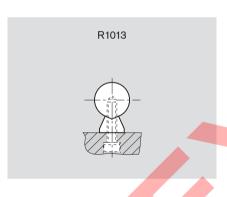
Medidas (mm)															
Ød	H ₁ ¹⁾	H ₂ ¹⁾	V	М	E ₁	E ₂	Т	t ₁	t ₂	V ₁ ²⁾	B ²⁾	N	O ₁	O ₂ 3)	U
	js6	±0,012			±0,15	±0,15				máx.			ISO 4762-8.8	ISO 4762-8.8	DIN7980 ⁴⁾
20	52	7,5	15	8,3	8	22	37,5	8,5	8,5	4,0	30	11	M6x45	M6x16	6
25	62	10,0	20	10,8	10	26	37,5	15,0	11,0	5,5	36	15	M8x50	M8x20	8
30	72	12,5	25	11,0	12	30	50,0	15,3	13,5	7,0	42	17	M10x60	M10x25	10
40	88	15,0	30	15,0	12	38	50,0	19,0	16,0	8,5	50	21	M12x70	M12x30	12
50	105	17,5	35	19,0	15	45	50,0	24,0	18,5	9,0	60	25	M14x80	M14x35	14

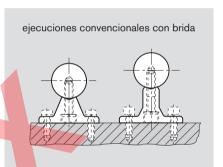
Soporte de ejes tipo2

Medic	Medidas (mm)													
Ød	H ₁ ¹⁾	H ₂ 1)	٧	M	E	Т	t ₁	t ₂	V ₁ ²⁾	B ²⁾	N	O ₁	O ₂ ³⁾	U
	js6	±0,012			±0,15				máx.			ISO 4762-8.8	ISO 4762-8.8	DIN7980 ⁴⁾
20	52	7,5	15	8,3	15	50	8,5	8,5	4,0	30	11	M6x45	M6x16	6
25	62	10,0	20	10,8	18	60	15,0	11,0	5,5	36	15	M8x50	M8x20	8
30	72	12,5	25	11,0	21	75	15,3	13,5	7,0	42	17	M10x60	M10x25	10
40	88	15,0	30	15,0	25	100	17,5	16,0	8,5	50	19	M10x70	M12x30	10
50	105	17,5	35	19,0	30	100	21,5	18,5	9,0	60	21	M12x80	M14x35	12

- 1) Medido con eje de prueba, medida nominal "d" y longitud de aprox. 50 mm.
- 2) Recomendación de construcción: ejecutar el lado contrario sin borde de referencia (V₁), alinear en paralelo sobre los ejes.
- 3) Solo válido para el atornillado en roscas de acero o de fundición.
- 4) DIN 7980 retirado. Arandelas elásticas disponibles en su comercio.

sin brida

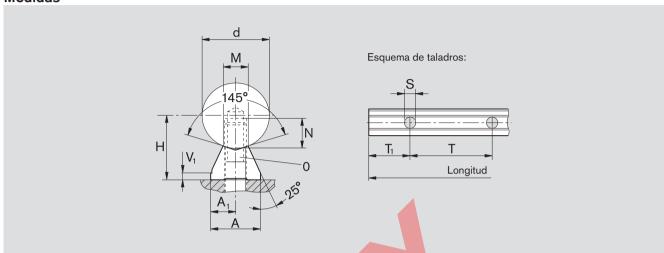

R1013 Eje de acero montado con soportes del eje


Material

- Soportes de eje: aluminio

Construcción

- Estos soportes de ejes permiten construcciones especialmente compactas y son aptos para construcciones en las que el eje de acero se monta por debajo. Si se compara con ejecuciones de brida convencionales (véase la figura), este elemento presenta una altura de construcción muy reducida.
- Muy económico


Eje	Referencias	Peso
Ød		
(mm)		(kg/m)
12	R1013 012	1,1
16	R1013 016	1,9
20	R1013 020	3,0
25	R1013 025	4,5
30	R1013 030	6,3

00 = acero bonificado h6 01 = acero bonificado h7 30 = acero anticorrosivo h6 31 = acero anticorrosivo h7 60 = acero bonificado cromado h6 61 = acero bonificado cromado h7

Ejemplo de pedido:

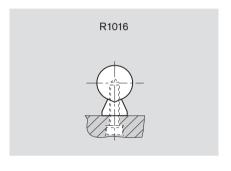
Diámetro de eje 25 mm, h7, acero bonificado, longitud 1500 mm, montado con soporte de ejes se pide como:

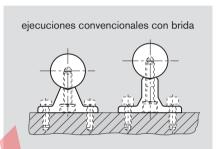
R1013 025 01 / 1500 mm.

Medidas (mm	n)									
Ød	H ¹⁾	Α	A ₁	V_1	T		S	N	M	0
	±0,05									ISO 4762-8.8
12	14,5	11	5,5	3	75	4	,5	8	5,8	M4
16	18,0	14	7,0	3	75	5	,5	9	7,0	M5
20	22,0	17	8,5	3	75	6	,6	11	8,3	M6
25	26,0	21	10,5	3	75	9	,0	15	10,8	M8
30	30,0	23	11,5	3	100	11	,0	17	11,0	M10

¹⁾ Medido con eje de prueba, medida nominal "d" y longitud de aprox. 50 mm. A petición, hasta 1800 mm longitud con un paralelismo de 50 µm

sin brida, con borde de referencia


R1016 Eje de acero montado con soportes de ejes


Material

- Soportes de eje: Acero

Construcción

- Estos soportes de acero permiten construcciones especialmente compactas y son aptos para construcciones en las que el eje de acero se monta por debajo. Si se compara con ejecuciones de brida convencionales (véase la figura), este elemento presenta una altura de construcción muy reducida.
- El borde de referencia facilita la alineación

Eje	Referencias	Peso
Ø d (mm)		(kg/m)
16	R1016 016	2,5
20	R1016 020	3,8
25	R1016 025	5,6
30	R1016 030	7,6
40	R1016 040	13,4
50	R1016 050	20,2

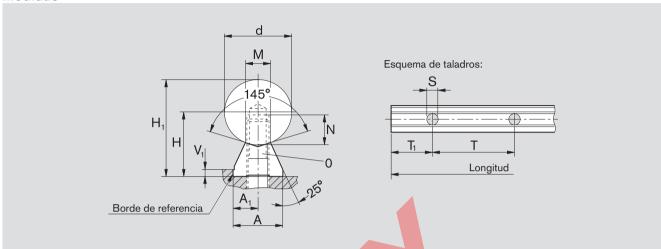
Ejes:

00 = acero bonificado h6

01 = acero bonificado h7

30 = acero anticorrosivo h6

31 = acero anticorrosivo h7


60 = acero bonificado cromado h6

61 = acero bonificado cromado h7

Ejemplo de pedido:

Diámetro de eje 30 mm, h7, acero bonificado, longitud 900 mm, montado con soporte de ejes se pide como:

R1016 030 01 / 900 mm.

Medida	s (mm)					Tolerancias de una clasificación (µm)								
										Eje h7				
Ød	H ¹⁾	H₁	Α	A ₁	V ₁	Т	S	N	M		0	H ²⁾	H ₁ ³⁾	H ₁ ³⁾
			±0,02	±0,02						DIN47	62-8.8			
16	18	26,0	14	7,0	3	75	5,5	9	7,0	M5		20	32	36
20	22	32,0	17	8,5	3	75	6,6	11	8,3	M6		20	33	38
25	26	38,5	21	10,5	3	75	9,0	15	10,8	M8		20	33	38
30	30	45,0	23	11,5	3	100	11,0	17	11,0	M10		20	33	38
40	39	59,0	30	15,0	4	100	13,5	21	15,0	M12		20	35	41
50	46	71,0	35	17,5	5	100	15,5	25	19,0	M14		20	35	41

¹⁾ Tolerancia: ±0,02 mm; se suministra clasificado por altura de 20 μm.

²⁾ Medido con eje de prueba, medida nominal "d" y longitud de aprox. 50 mm. A petición, hasta 1800 mm longitud con un paralelismo de 10 µm

³⁾ Inclusive tolerancia de eje (calculado estáticamente).

Sinopsis del producto

Las ventajas

- Para montajes sencillos y alineaciones rápidas
- Ejecución precisa con borde de referencia
- Más económicos que construcciones propias

Aluminio Compacto R1058..

Aluminio R1057...

Fundición, acero R1055

Brida de fundición R1056..

Ejemplo de soporte brida:

Soporte brida de eje WBA-30-C-FO

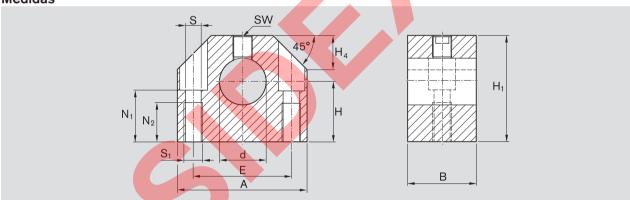
Definición de las abreviaciones						
Tipo	Soporte brida de eje = WB					
Material	Fundición	= G				
	Aluminio	=A				
	Acero	= S				
Diámetro del eje		= 30				

WB	Α	30	С	FO				
					FO :	=	Fijación por arriba	Fijación
					Ρ :	=	Para sistema de perfiles	
					F :	=	Brida	
					C	=	Compacto	Forma constructiva

Soportes brida de ejes Compactos, R1058

Material

- Aluminio


Construcción

- Altura especialmente reducida, adecuados para sets lineales con rodamientos lineales Compactos
- Fijación por arriba de mejor acceso
- Mayor seguridad gracias a la fijación por tornillo con mayor diámetro de
- Rosca para fijación por debajo
- Taladros pasantes para la fijación por arriba

Eje Ø d	Referencias WBAC-FO	Peso
(mm)		(kg)
12	R1058 012 00	0,045
16	R1058 016 00	0,065
20	R1058 020 00	0,110
25	R1058 025 00	0,170
30	R1058 030 00	0,220
40	R1058 040 00	0,470
50	R1058 050 00	0,820

Medidas

Medidas	(mm)												Par de apriete
Ød	d	H ¹⁾	H ₁	Α	В	E	S ²⁾	S ₁	N ₁	N ₂	H ₄	SW	
	H8	±0,01				±0,15							(Nm)
12	12	19	33	40	18	27	5,3	M6	16	13	11	2,5	3,8
16	16	22	38	45	20	32	5,3	M6	18	13	13	2,5	3,8
20	20	25	45	53	24	39	6,6	M8	22	18	15	3,0	6,6
25	25	31	54	62	28	44	8,4	M10	26	22	17	4,0	16,0
30	30	34	60	67	30	49	8,4	M10	29	22	19	4,0	16,0
40	40	42	76	87	40	66	10,5	M12	38	26	24	5,0	30,0
50	50	50	92	103	50	80	13,5	M16	46	34	30	6,0	52,0

- 1) Referido a la medida nominal de eje "d"
- 2) Tornillos de fijación ISO 4762-8.8

Ejemplo de aclaración de abreviación

WB	Α	20 -	С	- FO
Soporte brida de eje	Aluminio	Ø 20	Serie Compact	Fijación por arriba

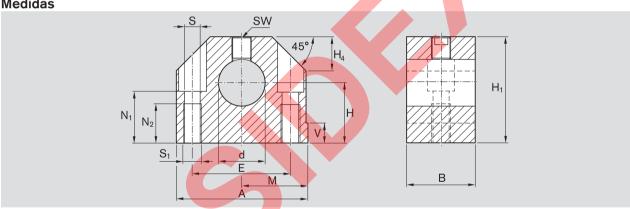
Encontrará más información acerca de la abreviación en Página 236.

Indicación: Disponible con la misma construcción con bloqueo lateral R1058 7 ..

Soportes brida de ejes, R1057

Material

- Aluminio


Construcción

- Sujeción rígida del eje gracias su ancha forma constructiva
- Fijación por arriba de mejor acceso
- Mayor seguridad gracias a la fijación por tornillo con mayor diámetro de rosca
- Rosca para fijación por debajo
- Taladros pasantes para la fijación por
- Con borde de referencia para una alineación más fácil

Eje Ø d	Referencias WBAFO	Peso
(mm)		(kg)
10	R1057 010 00	0,05
12	R1057 012 00	0,06
16	R1057 016 00	0,11
20	R1057 020 00	0,18
25	R1057 025 00	0,35
30	R1057 030 00	0,48
40	R1057 040 00	0,90
50	R1057 050 00	1,50
60	R1057 060 00	3,00

Medidas

Medid	as (mm)														Par de apriete
Ød	d	H ¹⁾	H ₁	M ¹⁾	Α	В	E	S ²⁾	S ₁	N ₁	N_2	V	H_4	SW	
	H8	±0,01		±0,01											(Nm)
10	10	18	31	20,0	40	20	27 ^{±0,15}	5,3	M6	14,0	13	5,0	10	2,5	3,8
12	12	20	35	21,5	43	20	30 ^{±0,15}	5,3	M6	16,5	13	5,0	10	2,5	3,8
16	16	25	42	26,5	53	24	38 ^{±0,15}	6,6	M8	21,0	18	5,0	13	3,0	6,6
20	20	30	51	30,0	60	30	42 ^{±0,15}	8,4	M10	25,0	22	5,0	16	4,0	16,0
25	25	35	61	39,0	78	38	56 ^{±0,15}	10,5	M12	30,0	26	6,5	20	5,0	30,0
30	30	40	70	43,5	87	40	64 ^{±0,15}	10,5	M12	34,0	26	8,0	22	5,0	30,0
40	40	50	88	54,0	108	48	82 ^{±0,15}	13,5	M16	44,0	34	10,0	28	6,0	52,0
50	50	60	105	66,0	132	58	100 ^{±0,20}	17,5	M20	49,0	42	12,0	37	8,0	120,0
60	60	75	130	82,0	164	74	124 ^{±0,20}	22,0	M27	59,0	42	13,0	42	10,0	220,0

¹⁾ Referido a la medida nominal de eje "d"

Ejemplo de aclaración de abreviación

WB	Α	20	· FO
Soporte brida de eje	Aluminio	Ø 20	Fijación por arriba

Encontrará más información acerca de la abreviación en Página 236.

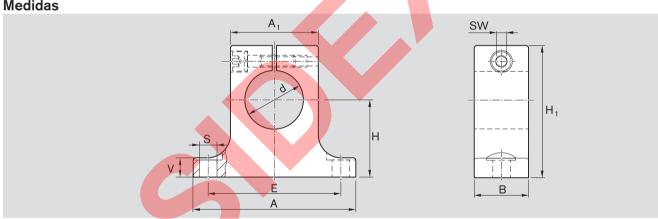
Indicación: Disponible con la misma construcción con bloqueo lateral R1057 7 ..

²⁾ Tornillos de fijación ISO 4762-8.8

Soportes brida de ejes, R1055

Material

- Fundición de grafito esferoidal
- Acero


Construcción

- Fijación por el lateral

Eje	Referencias WBG	Peso
Ød		
(mm)		(kg)
8	R1055 008 00	0,04
12	R1055 012 00	0,06
16	R1055 016 00	0,12
20	R1055 020 00	0,22
25	R1055 025 00	0,37
30	R1055 030 00	0,55
40	R1055 040 00	0,97
50	R1055 050 00	1,90
60	R1055 060 00	3,60
80	R1055 080 00	7,30

Medidas

Medida	ıs (mm)		1							
Ød	d	H ¹⁾	H ₁ ²⁾	A ²⁾	A ₁ ²⁾	B ²⁾	E	S ³⁾	V ²⁾	SW
	H8									
8	8	15 ^{±0,010}	27	32	16	10	25 ^{±0,15}	4,5	5,0	2,5
12	12	20 ^{±0,010}	35	42	20	12	32 ^{±0,15}	5,5	5,5	3,0
16	16	25 ^{±0,010}		50	26	16	40 ^{±0,15}	5,5	6,5	3,0
20	20	30 ^{±0,010}	50	60	32	20	45 ^{±0,15}	5,5	8,0	3,0
25	25	35 ^{±0,010}	58	74	38	25	60 ^{±0,15}	6,6	9,0	4,0
30	30	40 ^{±0,010}		84	45	28	68 ^{±0,20}	9,0	10,0	5,0
40	40	50 ^{±0,010}	86	108	56	32	86 ^{±0,20}	11,0	12,0	6,0
50	50	60 ^{±0,015}	100	130	80	40	108 ^{±0,20}	11,0	14,0	6,0
60	60	75 ^{±0,015}		160	100	48	132 ^{±0,25}	13,5	15,0	8,0
80	80	100 ^{±0,015}	160	200	130	60	170 ^{±0,50}	17,5	22,0	10,0

¹⁾ Referido a la medida nominal de eje "d"

Ejemplo de aclaración de abreviación

WB	G	20
Soporte brida de eje	Fundición de grafito esferoidal	Ø 20

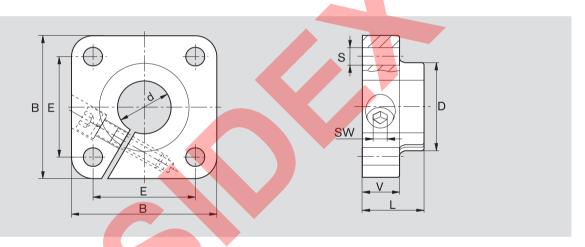
²⁾ Tolerancia ISO 8062-3 -DCTG 11

³⁾ Tornillos cilíndricos según ISO 4762-8.8.

Soportes brida de ejes, R1056 brida

Material

- Fundición gris


Construcción

- En comparación con el montaje en taladros laterales realizados por el cliente, los soportes brida permiten la alineación de los ejes y evitan sobrecargas en los rodamientos lineales causadas por ejes no paralelos
- Tornillo de fijación lateral

Eje Ø d (mm)	Referencias WBGF	Peso (kg)
12	R1056 012 00	0,15
16	R1056 016 00	0,21
20	R1056 020 00	0,28
25	R1056 025 00	0,41
30	R1056 030 00	0,75
40	R1056 040 00	1,65
50	R1056 050 00	2,60

Medidas

Medidas (mm)								
Ød	d H7	B ¹⁾	L ¹⁾	D ¹⁾	E	S H13	V 1)	SW
12	12	42	20	23,5	30 ^{±0,12}	5,5	12	3
16	16	50	20	27,5	35 ^{±0,12}	5,5	12	3
20	20	54	23	33,5	38 ^{±0,15}	6,6	14	4
25	25	60	25	42,0	42 ^{±0,15}	6,6	16	5
30	30	76	30	49,5	54 ^{±0,25}	9,0	19	6
40	40	96	40	65,0	68 ^{±0,25}	11,0	26	8
50	50	106	50	75,0	75 ^{±0,25}	11,0	36	8

¹⁾ Tolerancia ISO 8062-3 -DCTG 9

Ejemplo de aclaración de abreviación

WB	G	20 -	F
Soporte brida de eje	Fundición gris	Ø 20	Brida

Encontrará más información acerca de la abreviación en Página 236.

Información adicional

Aquí encontrará información detallada acerca de productos, la eShop, así como sobre ofertas de formación y servicio.

Información del producto:

http://www.boschrexroth.com/en/xc/products/product-groups/ linear-motion-technology/index

eShop:

http://www.boschrexroth.com/eshop

Formación:

http://www.boschrexroth.com/training

Servicio técnico:

http://www.boschrexroth.com/service

Notas

Bosch Rexroth AG

Ernst-Sachs-Straße 100 97424 Schweinfurt, Germany Tel. +49 9721 937-0 Fax +49 9721 937-275 www.boschrexroth.com

Encontrará a su persona de contacto local en:

www.boschrexroth.com/contact

