YDAC INTERNATIONAL

Amortiguadores hidráulicos

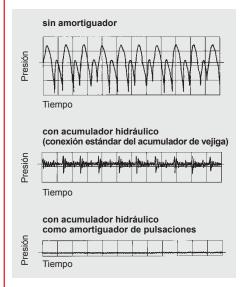
1. **AMORTIGUADORES HIDRÁULICOS**

1.1. DESCRIPCIÓN

1.1.1 Modo de funcionamiento

Las oscilaciones de presión que tienen lugar en los sistemas hidráulicos pueden producirse de forma puntual o periódica debido a las siguientes causas:

- Oscilaciones del caudal de las bombas de desplazamiento positivo
- Accionamiento de válvulas de cierre y de regulación con tiempos de apertura y de cierre reducidos
- Conexión y desconexión de bombas
- Conexión repentina de cámaras con diferente nivel de presión.


Para amortiguar las oscilaciones generadas, los amortiguadores hidráulicos de HYDAC son especialmente recomendables.

Gracias a su óptima adaptación al sistema correspondiente,

- las vibraciones de las tuberías, válvulas, acoplamientos etc. se minimizan, evitando posibles roturas en la valvulería.
- Los dispositivos de medición están protegidos y su funcionamiento ya no se ve influenciado.
- El nivel de ruido de los sistemas hidráulicos disminuve.
- Mejora la calidad de los materiales de trabajo de las máquinas herramienta.
- Permite conectar a la vez varias bombas en una tubería.
- Posibilidad de aumentar la velocidad de las bombas, así como la presión de impulsión.
- Reducción de los costes de mantenimiento y conservación.
- Prolongación de la vida útil de la instalación.

1.2. APLICACIÓN

Amortiguación de pulsación MODELO SB...P / SBO...P

Generalidades

El amortiguador de pulsaciones de HYDAC

- Evita roturas de tubos causadas por fatiga del material y vibraciones de las tuberías, así como suministro irregular de caudales.
- Protege la valvulería, los dispositivos de regulación y otros dispositivos,
- Mejora la amortiguación de ruidos.

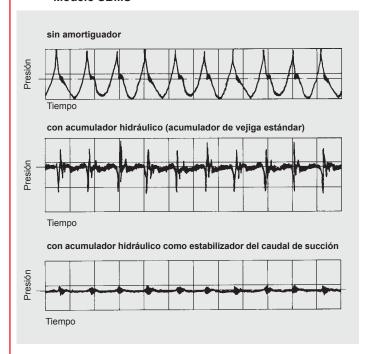
Casos particulares

Las principales aplicaciones del amortiguador de pulsaciones son: instalaciones hidráulicas, bombas de desplazamiento positivo, dispositivos de medición y regulación sensibles, así como sistemas de tuberías con amplias ramificaciones como, por ejemplo, en los procesos de la industria química.

Modo de funcionamiento

El amortiguador de pulsaciones cuenta con dos conexiones hidráulicas que permiten conectarlo directamente en las tuberías.

El desvío en la válvula de fluido proyecta el caudal directamente sobre la vejiga o la membrana. De esta manera se logra un contacto directo del caudal con la vejiga o membrana que compensa sobre el volumen de gas las oscilaciones del caudal de una forma casi sin inercia.


Se registran especialmente las oscilaciones de presión de mayor frecuencia. La presión de llenado se ajusta en función de las características de funcionamiento correspondientes.

Los amortiguadores de pulsaciones de HYDAC se componen de:

- un depósito de presión soldado o forjado de acero C; con recubrimiento interior para fluidos químicos agresivos o fabricado en acero inoxidable.
- una válvula de fluido especial con conexión en línea que se encarga del desvío del caudal hacia el depósito. (Rosca o brida).
- una vejiga o membrana de elastómeros (véase el capítulo 1.4.1).

Lo más cerca posible del generador de pulsaciones. Posición de montaje preferiblemente vertical (válvula de gas hacia arriba).

Estabilización del caudal de succión Modelo SB...S

Generalidades

El estabilizador del caudal de succión de HYDAC

- mejora el valor NPSH de la instalación.
- evita la cavitación de la bomba.
- evita las vibraciones de las tuberías.

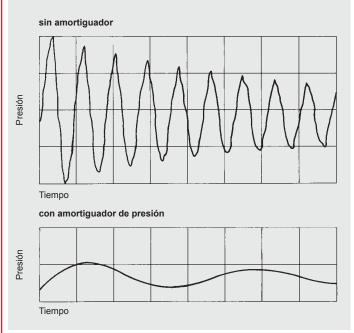
Casos particulares

Los ámbitos de aplicación principales son las bombas de pistón y membrana de las instalaciones de suministro, los reactores y la industria química.

Modo de funcionamiento

El funcionamiento impecable de las bombas solo es posible si dentro de esta no se produce cavitación alguna y no tienen lugar vibraciones de la tuberías.

Un volumen bastante elevado de fluido en el estabilizador del caudal de succión en relación al volumen de desplazamiento positivo de la bomba minimiza los efectos de aceleración de la columna de fluido de la tubería de succión. Debido a la velocidad de flujo extremadamente baja del estabilizador del caudal de succión y al desvío en una chapa deflectora se obtiene también una deposición de los gases. Estableciendo la sobrepresión de llenado de la vejiga de acuerdo con los procesos de funcionamiento se alcanza una amortiguación de pulsación óptima.


Disposición

El estabilizador del caudal de succión de HYDAC se compone de un depósito soldado de acero o acero inoxidable.

La entrada y la salida de caudal se encuentran una enfrente de la otra, separadas por una chapa deflectora. En la parte superior se ubica la vejiga dentro de una cámara. Además, la tapa cuenta con un tornillo de purga. En el fondo dispone de un elemento de purga para su uso opcional.

Montaje lo más cerca posible de las tomas de succión de la bomba. Posición de montaje vertical (válvula de gas hacia arriba).

Amortiguación de presión Modelo SB...A

Generalidades

El amortiguador de presión de HYDAC

- minimiza los golpes de presión.
- protege las tuberías y la valvulería.

Casos particulares

Los acumuladores se emplean en tuberías con válvulas o chapaletas de cierre rápido y para la conexión y desconexión de bombas

Otra posibilidad de aplicación es la acumulación de energía en el rango de baja presión.

Modo de funcionamiento

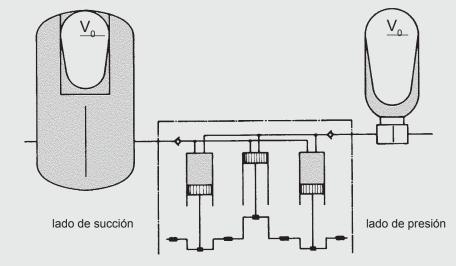
Las variaciones repentinas de los estados estacionarios de las tuberías por las que circula el fluido, por ejemplo por el fallo de una bomba o el cierre / apertura de una válvula, pueden producir presiones que multiplican el valor de servicio estacionario.

El amortiguador de presión evita estos efectos al transformar energía potencial en cinética o viceversa. De esta manera se evitan golpes de presión y quedan protegidas las tuberías, las válvulas reguladoras, los instrumentos de control y los demás elementos.

Disposición

El amortiguador de presión de HYDAC se compone de:

- Un depósito de presión soldado de acero C con o sin protección contra la corrosión de acero inoxidable.
- Una conexión con arandela perforada que evita la salida de la vejiga elástica del depósito, así como una brida.
- Una vejiga en las calidades de elastómero recogidas en el capítulo 1.4.1 con válvula de gas montada, con la cual puede aplicarse la presión de llenado p₀ y llevarse a cabo actividades de control.


Modelo especial

Los amortiguadores de presión se encuentran disponibles como acumuladores de membrana o pistón. Consúltenos en caso necesario.

Lo más cerca posible del lugar de inicio del estado estacionario. Posición de montaje vertical (válvula de gas hacia arriba).

1.3. DISEÑO

1.3.1 Amortiguador de pulsaciones y estabilizador del caudal de succión

En los lados de succión y presión de la bombas de pistón tienen lugar procesos prácticamente idénticos debido a la irregularidad del caudal. Por este motivo se utilizan para el diseño de las dimensiones de amortiguación las mismas fórmulas de cálculo del volumen de gas efectivo. El resultado es la aplicación de dos tipos de amortiguadores diferentes, derivado de las más diferentes relaciones de presión y aceleraciones en ambos lados.

Para determinar el amortiguador de presión no solo es decisivo el volumen del gas V₀, sino también la anchura nominal de la conexión a la bomba.

Para evitar variaciones adicionales del corte transversal que representan puntos de reflexión para las oscilaciones, así como para limitar la pérdida de presión, es necesario seleccionar un corte transversal del acumulador igual al de la tubería.

El volumen del gas V₀ del acumulador se calcula mediante la fórmula adiabática de variaciones del estado del gas.

El diseño del amortiguador hidráulico puede llevarse a cabo con ayuda del software de HYDAC ASP (Accumulator Simulation Program) indicando la pulsación residual o el volumen del gas. A continuación puede imprimir los resultados o guardar los archivos en formato ASP.

El programa ASP se encuentra disponible de manera gratuita en la página de Internet www.hydac.com. También puede solicitarlo por correo electrónico (speichertechnik@hydac.com).

Designaciones:

 ΔV = volumen de fluido [l] oscilante

$$\Delta V = m \cdot q$$

q = volumen de carrera [l]

$$q = \frac{\pi \cdot d_{\kappa}^2}{4} \cdot h_{\kappa}$$

d_x = diámetro del pistón [dm]

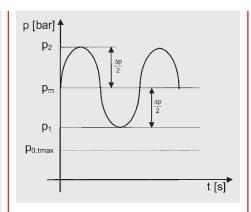
h_e = carrera del pistón [dm]

m = factor de amplitud

$$m = \frac{\Delta V}{q}$$

z = número de

procesos de compresión o de cilindros


efectivos por cada vuelta = pulsación residual [± %]

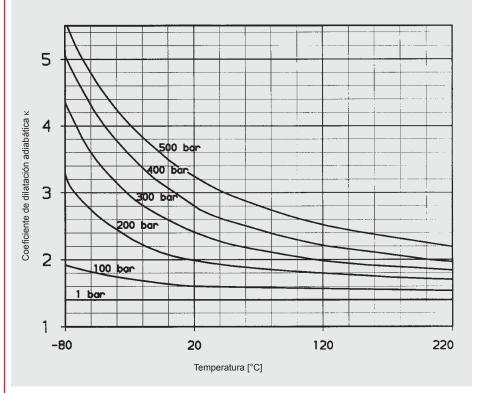
κ = coeficiente de dilatación adiabática

 Φ = relación de presión de presión de llenado previo a presión de servicio [0,6 ... 0,9]

$$\Phi = \frac{p_0}{p_m}$$

 Δp = rango de oscilación de la presión Δp = p_2 - p_1 [bar]

Fórmulas:


$$V_0 = \frac{\Delta V}{\left[\frac{\Phi}{1 - \frac{x}{100}}\right]^{\frac{1}{\kappa}} - \left[\frac{\Phi}{1 + \frac{x}{100}}\right]^{\frac{1}{\kappa}}}$$

$$\Delta V = m \cdot q$$

$$x [\pm \%] = \left| \frac{p_1 - p_m}{p_m} \cdot 100 \right|$$

$$= \frac{p_2 - p_m}{p_m} \cdot 100$$

Coeficiente de dilatación adiabática κ en función de la presión y la temperatura:

valores m para la bomba de pistón (otros a petición):

	valor m						
z	efecto simple	efecto doble					
1	0,550	0,250					
2	0,210	0,120					
3	0,035	0,018					
4 5	0,042	0,010					
5	0,010	0,006					
6	0,018	0,001					
7	0,005						
8	0,010						
9	0,001						

Ejemplo de cálculo Punto de partida:

bomba simple de 3 pistones

diámetro del pistón:

diámetro del pistón:

carrera del pistón:

velocidad:

caudal de impulsión:

temperatura de servicio:

sobrepresión de servicio

lada de manifesta.

- lado de presión:- lado de succión:200 bar4 bar

Objetivo:

- a) Estabilizador del caudal de succión para una pulsación residual de ± 2,5%
- b) Amortiguador de pulsación para una pulsación residual de ± 0,5%

Solución:

a) Determinación del estabilizador del caudal de succión

$$V_0 = \frac{\Delta V}{\left[\frac{\Phi}{1 - \frac{x}{100}}\right]^{\frac{1}{\kappa}} - \left[\frac{\Phi}{1 + \frac{x}{100}}\right]^{\frac{1}{\kappa}}}$$

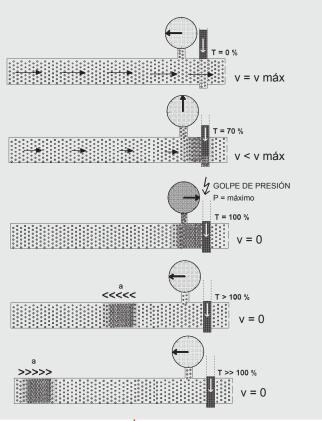
$$V_0 = \frac{0.035 \cdot \frac{\pi \cdot 0.7^2}{4} \cdot 1.0}{\left[\frac{0.6}{1 - \frac{2.5}{100}}\right]^{\frac{1}{1.4}} - \left[\frac{0.6}{1 + \frac{2.5}{100}}\right]^{\frac{1}{1.4}}}$$

 $V_0 = 0.54 I$

Peso: SB16S-12 con 1 litro de volumen de gas

b) Determinación del amortiguador de pulsación

$$V_0 = \frac{\Delta V}{\left[\frac{\Phi}{1 - \frac{X}{100}}\right]^{\frac{1}{\kappa}} - \left[\frac{\Phi}{1 + \frac{X}{100}}\right]^{\frac{1}{\kappa}}}$$


$$V_0 = \frac{0.035 \cdot \frac{\pi \cdot 0.7^2}{4} \cdot 1.0}{\left[\frac{0.7}{1 - \frac{0.5}{100}}\right]^{\frac{1}{2.0}} - \left[\frac{0.7}{1 + \frac{0.5}{100}}\right]^{\frac{1}{2.0}}}$$

 $V_0 = 3.2 I$

Peso: SB330P-4

1.3.2 Amortiguador de presión

Golpe de presión al cerrar una válvula sin acumulador hidráulico

Cálculo simplificado del golpe de presión para el cierre de una valvulería.

Estimación del golpe de presión que he tenido lugar según Joukowsky

 $\Delta p(N/m^2) = \rho \cdot a \cdot \Delta v$

 ρ (kg/m³) = densidad del fluido

 $\Delta v = v - v$

Δv = modificación de la velocidad del fluido

v (m/s) = velocidad del fluido antes de la modificación del estado

estacionario

v₁ (m/s) = velocidad del fluido tras modificarse el estado

estacionario

a (m/s) = velocidad de multiplicación de

la onda de presión

a (m/s) = $\frac{1}{\sqrt{\rho \cdot \left[\frac{1}{K} + \frac{D}{E \cdot e}\right]}}$

K (N/m²) = módulo de compresión

del fluido

E (N/m²) = módulo de elasticidad

de la tubería

D (mm) = diámetro inferior

de la tubería

e (mm) = grosor de la pared

de la tubería

La onda de presión alcanza el extremo contrario de la tubería y vuelve a la válvula después del tiempo t (tiempo de reflexión), siendo:

$$t(s) = \frac{2 \cdot L}{a}$$

L (m) = longitud de la tubería

T (s) = tiempo de funcionamiento ef. (cierre) de la válvula

Si T < t:

 $p_{max} = p_1 + \Delta p$

Si T > t:

 $p_{\text{máx}} = p_1 + \rho \cdot a \cdot \Delta v \cdot \frac{t}{T}$

Determinación de las dimensiones de amortiguación

El acumulador debe recibir la energía cinética del fluido convirtiéndola en energía potencial en el rango de presión prefijado. La modificación del estado del gas se lleva a cabo en este caso mediante fórmula adiabática.

$$V_0 = \frac{m \cdot v^2 \cdot 0.4}{2 \cdot p_1 \cdot \left[\left[\frac{p_2}{p_1} \right]^{1 - \frac{1}{\kappa}} - 1 \right] \cdot 10^2} \cdot \left[\frac{p_1}{p_0} \right]^{\frac{1}{\kappa}}$$

m (kg) = masa del fluido en la tubería

v (m/s) = velocidad delfluido

p, (bar) = altura de impulsión de la bomba

p₂ (bar) = presión de servicio adm.

 p_0 (bar) = presión de tensión previa

Para el dimensionamiento en caso de fallo o arranque de la bomba y para sistemas de tuberías ramificados se encuentra a disposición un programa especial de cálculo para el análisis del desarrollo de la presión.

Ejemplo de cálculo

Cierre rápido de la válvula de cierre de una tubería de carga de combustible

Punto de partida:

Longitud de la tubería L: 2000 m

Anchura nominal de la tubería D: 250 mm

Grosor de la pared de la tubería e: 6,3 mm

Material de la tubería:

acero

Caudal Q:

 $432 \text{ m}^3/\text{h} = 0.12 \text{ m}^3/\text{s}$

Densidad del medio ρ :

980 kg/m³

Altura de impulsión de la bomba p_1 : 6 bar

Sobrepresión de servicio mín. p_{\min} : 4 bar

Tiempo de cierre ef. de la válvula T:

(aprox. 20% del tiempo de cierre reg.)

Temperatura de servicio:

20 °Ċ

Módulo de compresión del fluido K: $1,62 \times 10^9 \text{ N/m}^2$

Módulo de elasticidad (acero) E: $2,04 \times 10^{11} \ N/m^2$

Objetivo:

Dimensiones del amortiguador de presión necesario (absorbedor de choques) si la sobrepresión máxima (p₂) no puede superar los 10 bar.

Solución:

Determinación del tiempo de reflexión:

$$a = \frac{1}{\sqrt{\rho \cdot \left[\frac{1}{K} + \frac{D}{E \cdot e}\right]}}$$

$$a = \frac{1}{\sqrt{980 \cdot \left[\frac{1}{162 \cdot 10^9} + \frac{250}{2.04 \cdot 10^{11} \cdot 6.3}\right]}}$$

$$t = \frac{2 \cdot L}{a} = \frac{2 \cdot 2000}{1120} = 3.575 \, s^*$$

* Si T < t, se genera un golpe de presión máximo y debe efectuarse el cálculo con la fórmula descrita en 1.3.2.

$$v = \frac{Q}{A}$$

$$v = \frac{0.12}{0.25^2 \cdot \frac{\pi}{4}} = 2.45 \text{ m/s}$$

$$\Delta_{p} = \rho \cdot a \cdot \Delta V$$

$$\Delta_{p} = 980 \cdot 1120 \cdot (2,45-0) \cdot 10^{-5}$$
= 26,89 bar

$$p_{m\acute{a}x} = p_1 + \Delta_p$$

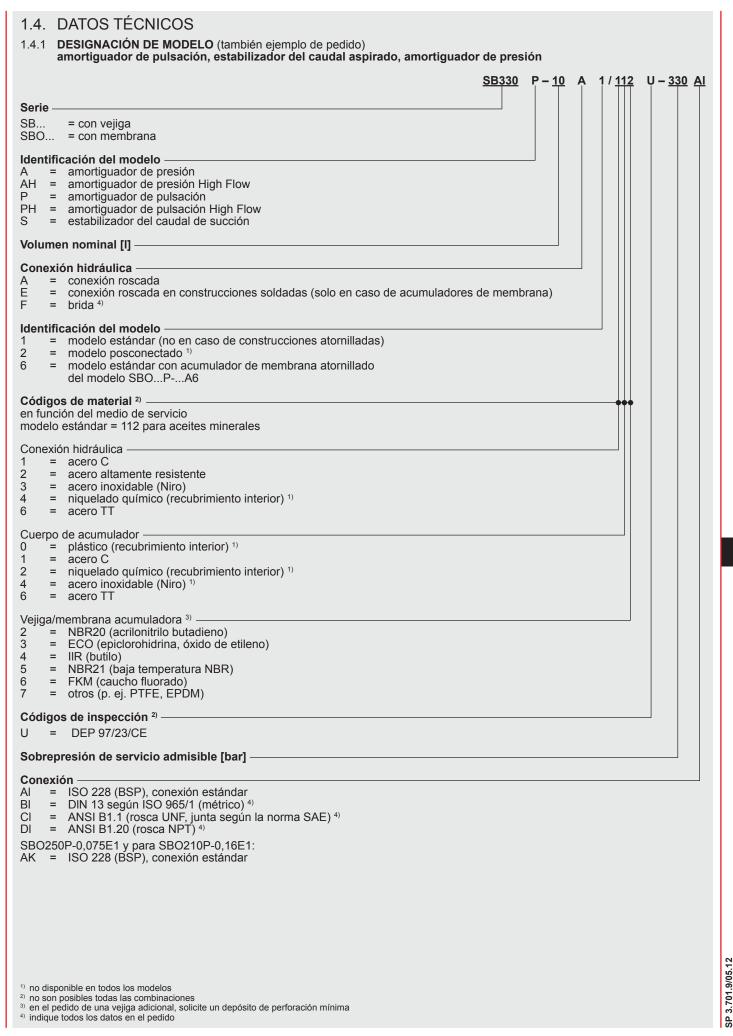
 $p_{m\acute{a}x} = 6 + 26,89 = 32,89 \text{ bar}$

Determinación del volumen de gas necesario:

$$\begin{array}{ll} \textbf{p}_0 & \leq 0.9 \bullet \textbf{p}_{\text{min}} \\ \textbf{p}_0 & \leq 0.9 \bullet 5 = 4.5 \text{ bar} \end{array}$$

$$V_{0} = \frac{m \cdot v^{2} \cdot 0.4}{2 \cdot p_{1} \cdot \left[\left[\frac{p_{2}}{p_{1}} \right]^{\frac{1-1}{\kappa}} - 1 \right] \cdot 10^{2}} \cdot \left[\frac{p_{1}}{p_{0}} \right]^{\frac{1}{\kappa}}$$

con
$$m = V \cdot \rho = \frac{\pi}{4} \cdot D^2 \cdot L \cdot \rho$$


$$V_0 = \frac{\frac{\pi}{4} \cdot 0.25^2 \cdot 2000 \cdot 980 \cdot 2.45^2 \cdot 0.4}{2 \cdot 7 \cdot \left[\left[\frac{11}{7} \right]^{1 - \frac{1}{1.4}} - 1 \right] \cdot 10^2} \cdot \left[\frac{7}{4.5} \right]^{\frac{1}{1.4}}$$

$$V_0 = 1641 I$$

Selección:

4 absorbedores de choques SB35AH-450.

HYDAC | 73

1.4.2 Generalidades

Sobrepresión de servicio

Véanse las tablas (puede diferir de la presión nominal de inspecciones efectuadas en el extranjero).

Volumen nominal

véanse las tablas

Volumen de gas efectivo

Véanse las tablas (basadas en las dimensiones nominales). Desviación mínima respecto al volumen nominal, a tener en cuenta en el cálculo del volumen útil.

En el caso de acumuladores de membrana, el volumen de gas efectivo equivale al volumen nominal.

Volumen útil

Volumen del fluido disponible entre las presiones de servicio p₂ y p₁.

Fluidos

Aceites minerales, aceites hidráulicos, fluidos altamente inflamables, agua, emulsiones, combustible. Otros medios a petición.

Abertura para el gas

Los acumuladores hidráulicos solo pueden funcionar con nitrógeno. No utilice otros gases.

¡Peligro de explosión!

Estado de suministro con presión de conservación. Presiones de llenado previo superiores posibles a petición.

Temperatura de servicio admisible

-10 °C ... +80 °C 263 K ... 353 K con código de material 112.

Otras a petición.

Relación de presión admisible

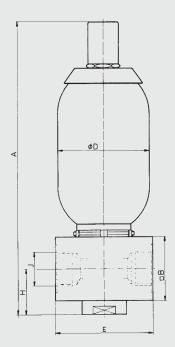
Relación de presión de servicio máxima p₂ con presión de llenado de gas p₀.

Véase el extracto del folleto:

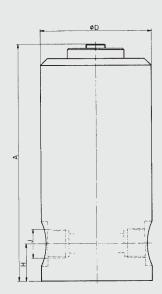
Acumulador nº 3.000

Indicaciones generales de seguridad

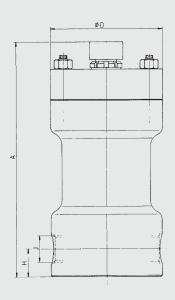
En los depósitos de acumulación no se deben realizar ni soldaduras ni trabajos mecánicos de ningún tipo.


Después de conectar la tubería hidráulica, esta deberá purgarse por completo. Es posible realizar trabajos (reparaciones, conexión de manómetros, etc.) en las instalaciones con acumuladores hidráulicos una vez se haya descargado la presión del fluido y la presión de llenado previo del gas.

Deben respetarse las instrucciones de servicio!

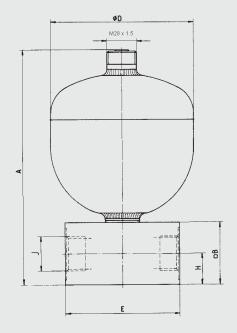

- Acumulador hidráulico de vejiga nº 3.201.CE
- Acumulador hidráulico de membrana nº 3.100 CE
- Acumulador hidráulico de pistón nº 3.301 CE

1.4.3 Amortiguador de presión

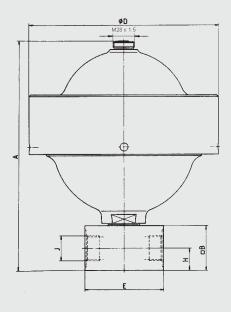

SB330/550P(PH)-...

SB800P-...

SB1000P-...



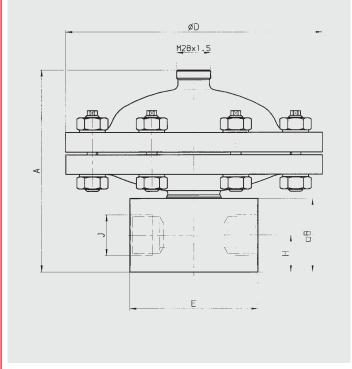
Dimensiones SB


Volumen nominal	Presión de servicio máx.*	Volumen del gas ef.	Peso	А	□В	ØD	Е	Н	J ²⁾ Rosca	Serie
[1]	[bar]	[I]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228	
1	330	1.0	11	365	80	118	120	57		SB330P
	550	1,0	13	384	70	121	120	53	G 1 1/4	SB550P
1.5	800 ³⁾	1.2	36	346	_	160	_	55		SB800P
1,5	1000 ³⁾	1,3	94	414	-	215	_	49	1)	SB1000P
2.5	330	2,4	16	570	80	118		57		SB330P
2,5	550	2,5	20	589	70	121	120	53	G 1 1/4	SB550P
	220	2.7	18	455	80	171		57		SB330P
4	330	3,7	26	491	100] 1/1	150	85	G 1 1/2	SB330PH
5	550	4,9	26	917	70	121	120	53	G 1 1/4	SB550P
6		F 7	20	559	80	171	120	57	G 1 1/4	SB330P
0	330	5,7	28	593	100	171		85	G 1 1/2	SB330PH
10	330	9,3	40	620	100			00	G 1 1/2	SB330P
10		9,3	50	652	130x140			100	SAE2"-6000 PSI	SB330PH
13		12,0	48	712	100			85	C 1 1/2	SB330P
20	330	18,4	70	920	100	229	150	00	G 1 1/2	SB330P
20		10,4	80	952	130x140	229		100	SAE2"-6000 PSI	SB330PH
24		23,6	82	986	100			85	C 1 1/2	SB330P
22	330	22.0	100	1445	100				G 1 1/2	SB330P
32		33,9	110	1475	130x140			100	SAE2"-6000 PSI	SB330PH

^{*} Inspección de acuerdo con la DEP 97/23/CE
¹) M56x4, conexión de alta presión DN 16, otras a petición
²) designación de conexión estándar= Al, otras a petición
³) Modelo especial, a petición

SBO...P...A6

Dimensiones SBO


Volumen nominal	Presión d máx.*	e servicio	Peso	Α	□В	ØD	E	Н	J ¹⁾ Rosca	Serie									
[1]	Acero C [bar]	NIRO [bar]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228										
0,075	250	_	0,9	131	_	64	h av. 44	40	0.4/4	SBO250PE1									
0,16		180	1,0	143	_	74	hex. 41	13	G 1/4]								
0,32	210	160	2,6	175	50	93	00	25	0.4/0	SBO210PE1									
0,5		_	3,0	192	50	105	- 80	25	G 1/2										
0,6	330	-	5,6	222		115				SBO330PE1									
0,75	210	140	5,1	217		121												SBO210PE1	
1,0	200	_	6,0	231		136			SBO200PE1	E1 g									
	140	-	6,2	244		145				SBO140PE1	soldado								
1,4	210	-	7,7	250		150				SBO210PE1									
	250	_	8,2	255	60	153	105	30	0 G 1	SBO250PE1									
2.0	100	100	6,3	261		160				SBO100PE1									
2,0	210	_	8,9	267		167					SBO210PE1								
3,5	250	-	13,5	377 368	170 158				SBO250PE1]									
4.0		50	7,9						SBO50PE1]									
4,0	_	250	13,5	377		170	1			SBO250PE1	1								
0,25	500	350	5,2 (6,3)	162	50	115 (125)	80	25	G 1/2	SBO500PA6									
0,6	330	250	8,9 (9,1)	202		140 (142)	95	25		SBO450PA6									
1,3	400	_	13,8	267		199				SBO400PA6	llad								
2,0	250	180	15,6	285	60	201	105	20	G 1	SBO250PA6	atornillado								
2,8	400	-	24,6	308		252	105	30		CDC400D 40	ā								
4.0	400	_	36,6	325		287		1			SBO400PA6								

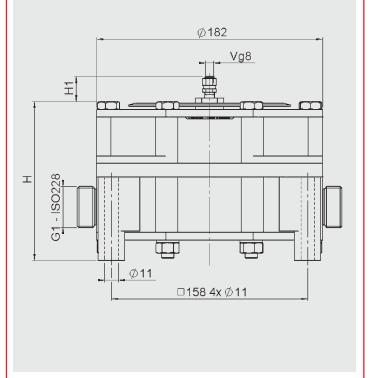
 ^{*} Inspección según DEP 97/23/CE
 ¹) designación de conexión estándar = AI, otras a petición
 () los valores de apriete presentan divergencias en el modelo NIRO

Amortiguador de presión contra medios agresivos

SBO...P-...A6/347...(PTFE)

Amortiguador de pulsaciones de acero inoxidable Niro con membrana con recubrimiento de PTFE y juntas de PTFE o FFKM. También disponible sin bloque de conexión.

Inspección: DEP 97/23/CE


Temperatura de servicio admisible: -15 $^{\circ}$ C ... +80 $^{\circ}$ C

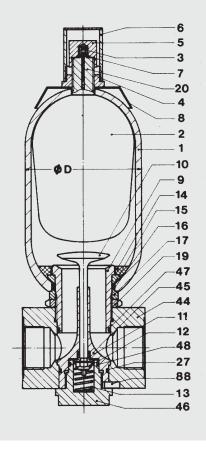
Relación de presión admisible p_2 : $p_0 = 2$: 1

Volumen	Presión	Peso	Α	□В	ØD	E	Н	J 1)
nominal	de							Rosca
	servicio							
	máx.							
[1]	[bar]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228
	40	11	140		210			
0,2	40	11	140		210			
0,2	250	27	197		230			
	230	21	137	60	230	105	30	G 1
	40	12	165	00	210	103	30	
0,5	70	12	100		210]		
	250	26	200		230			

designación de conexión estándar = AI, otras a petición

SBO...P-...A4/777... (PVDF/PTFE)

Amortiguador de pulsaciones de PVDF con membrana con recubrimiento de PTFE.


Temperatura de servicio admisible:

-10 °C ... +65 °C

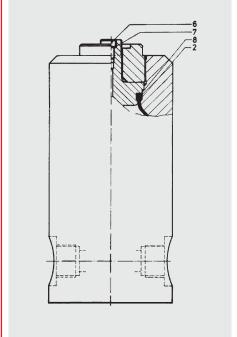
Relación de presión admisible p_2 : p_0 = 2 : 1

Volumen- nominal	Presión de servicio máx.	Peso	Н	H1	
[1]	[bar]	[kg]	[mm]	[mm]	
	10	5,7	128	20	
0,2	16	6,5	130	18	
	25	0,5	130	10	
	10	6,0	168	20	
0,5	16	6,8	170	19	
	25	0,0	170		

Piezas de recambio SB...P

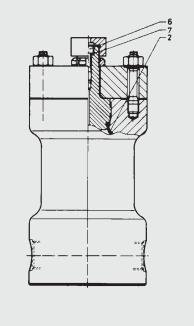
Denominación	pos.
Vejiga completa* compuesta por:	
<u>Vejiga</u>	
Inserción de válvula de gas	3
Tuerca de sujeción	3 4
Tuerca de sombrerete	5 6
Tapón de cierre	6
Junta tórica	7
Juego de juntas* compuesto por:	
Junta tórica	7
Cámara anular hermetizante	
para obturación	15
Junta tórica	16
Anillo de apoyo	23
Junta tórica	27
Junta tórica	47
Junta tórica	48
Anillo partido*	14
Inserción de válvula de gas*	3
* Piezas de recambio recomendadas	

*	Piezas	de	recamb	Olo	recomend	adas

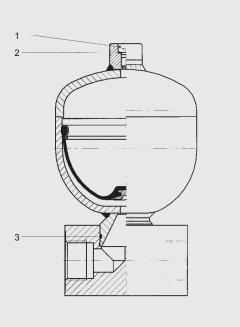

Denominación	pos.
Conexión completa	
compuesta por:	
Cuerpo de válvula de aceite	9
Disco de válvula	10
Buje de amortiguación	11
Tuerca de seguridad	12
Muelle de válvula	13
Anillo partido	14
Cámara anular hermetizante	
para obturación	15
Junta tórica	16
Anillo distanciador	17
Tuerca ranurada	19
Anillo de apoyo	
(solo con 330 bar)	23
Junta tórica	27
Pieza de conexión	44
Pieza de derivación	45
Тара	46
Junta tórica	47
Junta tórica	48
Muelle de ajuste	88

Dimensiones de la junta tórica [mm]

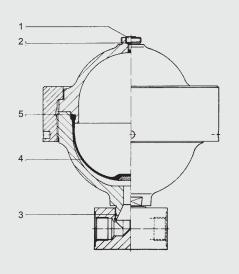
	oo ao la jalita		[]			
Serie	Volumen nominal	pos. 7	pos. 16	pos. 27	pos. 47	pos. 48
	Hominai					
SB330P	1- 6 I	7,5x2	55x3,5 1)	42,2x3 1)	46x3 1)	24,2x3 1)
SB550P	1- 5 I	7,5x2	50,17x5,33 ¹⁾	37,82x1,78 ¹⁾	40,94x2,62 1)	23,52x1,78 1)
SB330P/PH	10-32 I/4+6 I	7,5x2	80x5 ¹⁾	57,2x3 1)	67,2x3 ¹⁾	37,2x3 ¹⁾
SB330PH	10-32 l	7,5x2	100x5 ¹⁾	64,5x3 ¹⁾	84,5x3 ¹⁾	44,2x3 1)


¹⁾ Para los códigos 663 o 665, medidas diferentes.

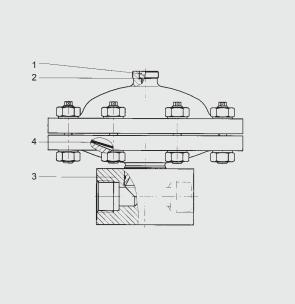
SB800P


Denominación	pos.
Vejiga	2
Tornillo de llenado	6
Anillo obturador U 9,3x13,3x1	7
Anillo de apoyo	8

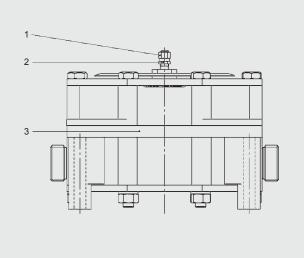
SB1000P


Denominación	pos.
Vejiga	2
Tornillo de llenado	6
Anillo obturador	7

SBO...P...E


Denominación	pos.
Tornillo de llenado	1
Anillo obturador	2
Anillo obturador	3

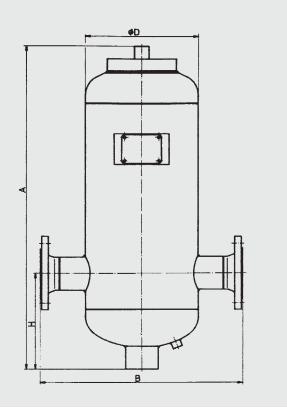
SBO...P...A6


Denominación	pos.
Tornillo de llenado	1
Anillo obturador	2
Anillo obturador	3
Membrana	4
Anillo de apoyo	5

SBO...P-...A6/347...(PTFE)

Denominación	pos.
Tornillo de llenado	1
Anillo obturador	2
Anillo obturador	3
Membrana	4

SBO...P-...A4/777... (PVDF/PTFE)


Denominación	pos.
Válvula de gas completa	1
Inserción de válvula de gas de latón / Niro	2
Membrana	3

Deben respetarse las instrucciones de servicio! Disponibles a petición.

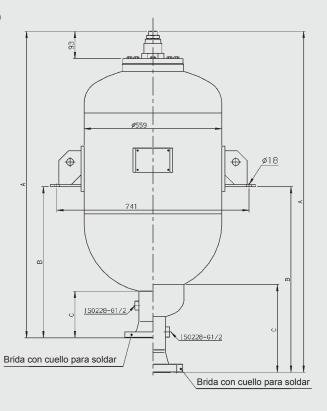
1.4.4 Estabilizador del caudal de succión

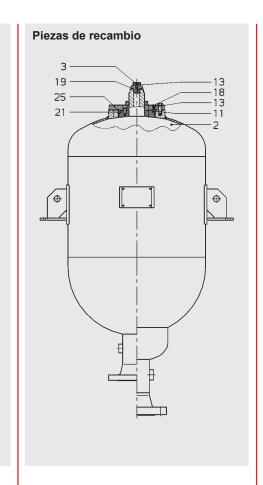
SB16S

Piezas de recambio 21 22 33 27 111 18 2 18 2 28,29

Dimensiones

SB16S: sobrepresión de servicio adm. 16 bar; inspección según DEP 97/23/CE											
Volumen nominal	Volumen del fluido	Volumen ef. del gas	Peso	A	В	ØD	Н	DN*			
[1]	[I]	[I] Ŭ	[kg]	[mm]	[mm]	[mm]	[mm]				
12	12	1	40	580	425	219	220	65			
25	25	2,5	60	1025	425	219	220	05			
40	40	4	85	890	540	300	250	80			
100	100	10	140	1150	650	406	350	100			
400	400	35	380	2050	870	559	400	125			


Niveles de presión 25 bar, 40 bar; otros a petición. Otros volúmenes de fluido a petición.


Denominación	pos.
Vejiga acumuladora	2
Inserción de válvula de gas	3
Junta tórica	11
Anillo para intercalar, 2x	18
Tornillo de cierre	21
Anillo de sujeción	22
Tuerca de sombrerete	25
Junta tórica	27
Anillo obturador	28
Tornillo de cierre	29

^{*} según EN1092-1/11 /B1/PN16

1.4.5 Amortiguador de presión

SB16/35A(H)

Dimensiones

450

480

SB16/35A:	SB16/35A: sobrepresión de servicio adm. 16/35 bar (DEP 97/23/CE)													
Volumen	Volumen	Peso		A		В		С		DN*				
nominal	del gas ef.	[kg]		(aprox.) [mm]		(aprox.) [mm]		(aprox.) [mm]						
[1]	[1]	SB16A	SB35A	SB16A	SB35A	SB16A	SB35A	SB16A	SB35A					
100	99	84	144	870	880	390	403							
150	143	101	161	1070	1080	490	503							
200	187	122	223	1310	1320	685	698	185	198	100				
300	278	155	288	1710	1720	975	988	100	190	100				
375	392	191	326	2230	2240	1250	1263							

2635

1465

1478

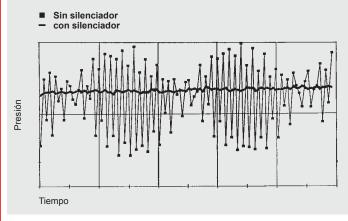
Denominación	pos.
Vejiga acumuladora	2
Tornillo de cierre	3
Junta tórica	11
Anillo obturador	13
Tornillo de purga	18
Junta tórica	19
Anillo de seguridad	21
Junta tórica	25

SB16/35AH: sobrepresión de servicio adm. 16/35 bar (DEP 97/23/CE)

386

2625

237


Volumen	Volumen	Peso		Α		В		С	DN*	
nominal	del gas			(aprox.)		(aprox.)		(aprox.)		
	ef.	[kg]		[mm]		[mm]		[mm]		
[1]	[1]	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH	
100	99	93	153	957	965	457	465			
150	143	110	170	1157	1165	557	565			
200	187	131	230	1417	1425	842	850	245	254	80
300	278	164	297	1865	1873	1092	1100	245	254	00
375	392	200	335	2307	2315	1342	1350			
450	480	246	395	2702	2710	1542	1550			

^{*} según EN1092-1/11 /B1/PN16 o PN40 otras a petición

2. SILENCIADOR

2.1. APLICACIÓN

2.1.1 Silenciador de ruidos de líquidos modelo SD...

Generalidades

Todas las bombas de desplazamiento positivo, como las bombas de pistones radiales y axiales, paletas o engranajes, así como las bombas helicoidales, originan fluctuaciones de volumen y de presión que se perciben en forma de vibraciones y de ruidos. La bomba no es el único elemento que genera ruidos. De hecho, son el resultado de oscilaciones mecánicas y oscilaciones generadas por las pulsaciones del fluido, que se amplifican al incidir sobre grandes superficies. Los elementos aislantes, el uso de mangueras flexibles y cubiertas insonorizantes solo ofrecen soluciones parcialmente satisfactorias, ya que no evitan la transmisión hacia otras zonas.

Casos particulares

Los automóviles, máquinas herramienta, máquinas procesadoras de plástico, aviones, barcos, estaciones hidráulicas de accionamiento y otros sistemas con grandes "superficies" cuentan con dispositivos para la reducción del nivel de ruido.

Modo de funcionamiento

El SILENCIADOR de ruidos de líquidos de HYDAC se basa en el principio de la cámara de expansión con línea de interferencia.

La reflexión de las oscilaciones dentro del SILENCIADOR permite atenuar una gran parte de dichas oscilaciones por encima de un amplio espectro de frecuencias.

Disposición

El SILENCIADOR de ruidos de líquidos de HYDAC está formado por una carcasa exterior soldada o forjada, un tubo interno y dos conexiones de tuberías ubicadas una frente a la otra.

El SILENCIADOR carece de elementos móviles y aberturas para el gas, por lo que no precisa mantenimiento.

El SILENCIADOR de ruidos de líquidos de HYDAC se puede usar con aceites minerales, ésteres fosfóricos y agua glicolada. Para otros fluidos también se puede suministrar una versión de acero inoxidable.

El modelo especial de SILENCIADOR se encuentra disponible como acumulador de membrana o pistón. Consúltenos en caso necesario.

Montaje

Para minimizar la transmisión de oscilaciones mecánicas es recomendable unir un lado de la conexión a un tubo flexible.

La posición de montaje del acumulador es arbitraria, siempre y cuando tenga en cuenta la dirección del flujo.

Deben respetarse las instrucciones de servicio! $n^{\rm o}$ 3.701.CE

2.2. DISEÑO

2.2.1 Silenciador

El diseño del SILENCIADOR de ruidos de líquidos de HYDAC se lleva a cabo de forma que se producen pequeños volúmenes de construcción con la mayor amortiguación posible. El punto de partida de la tabla de selección es la determinación de la medida de insonorización del paso D a partir de 20 dB.

$$D = 20 \cdot \log \frac{\Delta p_o}{\Delta p_m}$$

 Δp_o = rango de oscilación de la presión sin silenciador Δp_m = rango de oscilación de la presión con silenciador

Para la selección del amortiguador debe tenerse en cuenta:

- 1) el tamaño del cuerpo del silenciador
- 2) la frecuencia base f de la bomba

 $f = i \cdot n / 60 \text{ en Hz}$

i = número de elementos de desplazamiento positivo

n = velocidad en min-1

2.2.2 Ejemplo de cálculo Punto de partida:

Bomba axial con 9 pistones velocidad: 1500 min⁻¹

conexión: G1 equivale a D, = 19 mm

caudal: 300 l/min

medio de servicio: aceite mineral presión de servicio: máx. 210 bar

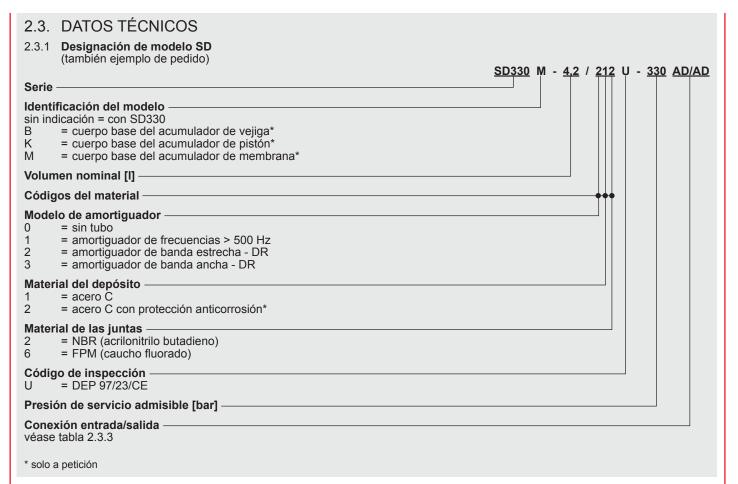
Solución:

1) Frecuencia base f

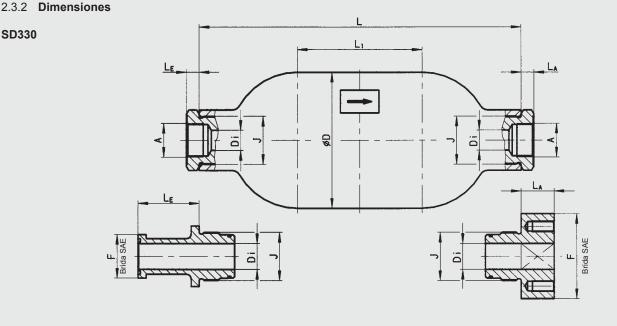
 $f = i \cdot n / 60 \text{ en Hz}$

= 9 • 1500/60

= 225 Hz


2) A partir del diagrama "Desarrollo de la amortiguación" puede seleccionarse el siguiente modelo de SILENCIADOR:

SD330-1,8/012U-330AE/AE


Medida de insonorización del paso ≈ 31 dB

Pérdida de presión ≈ 2 bar

SD330

Volumen nominal [l]	L [mm]	L ₁ [mm]	Ø D [mm]	J ISO 228	Peso [kg]
1,3	250	_	114	G 1	6,5
1,8	355	155	114	G 1 1/4	5,5
4,2	346	_	168	G 1 1/2	12,5
4,7	420	155	100	G 2	11,4
5,5	815	615	114	G 1 1/4	14,0

2.3.3 Conexiones del silenciador

a) Conexión roscada según ISO 228

		Conexión hidráulica: A												
		B 3/8					AC AD G 3/4		AF G 1 1/4		AG G 1 1/2		GG G 1 1/2	
Volumen	D _i = 1	I5 mm	D _i = 1	3 mm	D _i = 1	l6 mm	D _i = 19 mm		D _i = 25 mm		D _i = 32 mm		$D_i = J$	
nominal	L _E [mm]	L _A [mm]												
1,3	17	17	-	_	_		_		_		_		-	_
1,8	-	_	13	13	13	13	30	30	33	33	-	_	-	_
4,2	_				_		-	=	-	-	-	_	Sin pie	eza de alme
4,7	_		,		16	16	16	16	26	26	36	36	36	36
5,5	_		13	13	13 13		30	30	33	33	-	_	-	

b) Conexión con brida SAE J518 (Code 62 - 6000 psi)

	Conexión hidráulica F												
	F	FG F		Н	F	Ί	F	K	F	L	FM		
Volumen	SAE	1/2"	SAE	3/4"	SAE 1"		SAE 1 1/4"		SAE 1 1/2"		SAE 2"		
nominal	D _i = 1	3 mm	D _i = 1	9 mm	D _i = 2	5 mm	$D_i = 3$	32 mm	$D_{i} = 3$	8 mm	D _i = 50 mm		
<u>[I]</u>	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm] L _A [mm]		
1,3	-	-	-	=	_	-		_	_	=	_		
1,8	53	31	59	36	65	36	_		-	-	_		
4,2	_		_		_	-		_	0	33	_		
4,7	-	-	105	36	120	36	76	28	76	28	*		
5,5	53 31		53 31 59 36 65 36		36	_		_		_			

⁻ no disponible * a petición

OBSERVACIONES

Las indicaciones del presente folleto hacen referencia a las condiciones de servicio descritas y a las especificaciones de aplicación. En caso de presentarse diferentes especificaciones de aplicación y/o condiciones de servicio, contacte con el departamento especializado que corresponda. Sujeto a modificaciones técnicas.

HYDAC Technology GmbH Industriegebiet

66280 Sulzbach/Saar, Alemania

+49 (0) 68 97 / 509 - 01 +49 (0) 68 97 / 509 - 464 Tel.: Fax: Internet: www.hydac.com

Correo electrónico: speichertechnik@hydac.com